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Preface

The laser is a device that is used to convert incoherent

energy into coherent energy in and near the visible region of

the electromagnetic spectrum. The resonator performs a

crucial role in the conversion; it is the principal part of

the laser that defines the degree of coherence of the output.

The study of optical resonators conceptually began with the

analysis of waveguides. However, the study is complicated by

the fact that optical resonators are multimode devices that

are unbounded in 'the transverse directions. Since about

1960, numerous researchers have considered the problem of

modal analysis of resonators and much is known about the

natural modes of optical resonators. However, most analyses

have oversinplified the problem of including the saturable

gain medium. This dissertation is an effort aimed at

treating this problem. We begin by looking at the modes of

an empty resonator in .order to establish a baseline for the

study of loaded resonators as well as to examine the utility

of the linear prolate functions as a basis set when solving

for the modes of a one dimensional "strip" resonator with a

kernel expansion. We then include the gain rigorously,

*beginning with Maxwell's equations and ending with a new

integral equation that describes the modes of a loaded

resonator. We specialize this equation to the case of a

*strip resonator and then model the gain medium with a single

*gainsheet at the feedback mirror of a positive branch,

confocal unstable resonator. Although this model is only a

first order model, the results shed new light into the area
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of loaded cavity analysis. The application of this work is

broad, giving better insight into how actual lasers work and

how to model such devices.

I owe a debt of gratitude to many people who contributed

to this research. My advisor, Dr (Lt Col) John H. Erkkila,

spent endless hours with me, discussing everything from

abstract concepts to difficult derivations to detailed

numerical codes. Without his insights and support, this

research could nqt have been done. The other members of my

advisory committee, Dr Donn Shankland and Dr John Jones, were

always available to answer my questions. Their direction was

very instrumental in the success of this effort. Dr David

Lee was also very helpful. He always made time in his busy

* schedule to consider my questions. His comment that

"graduate school is supposed to change the way you think" has

stuck in my mind and given me insight into the educational

* process I might otherwise have missed. Dr Leno Pedrotti

*. frequently encouraged me in dry times, helping me keep a

* perspective on the research program. The scientists of the

*the Air Force Weapons Laboratory Resonator Analysis Group

help keep this research effort directed at realistic

applications. My follow-on assignment with this group has

been highly rewarding. This group included Dr W. P. (Pete)

Latham, Dr Tom Ferguson, Dr Martin Smithers, Dr Alan Paxton,

Dr Tom Gavrielides and Capt Ted Salvi. Of course, I am

deeply indebted to my lovely wife Jan for her support and

encouragement while she ran our household during my four and
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a half years in graduate school. She even managed to give

birth to our three daughters, Jennifer, Julie and Gwendolyn.

It is to her and my daughters that I dedicate this work.

Last but most of all, I thank my Lord and Savior, Jesus

Christ, for teaching me the truth of Jeremiah 33:3.
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Abstract

The analysis of the modes of optical resonators is

crucial to understanding how actual laser devices operate.

A consistent formulation that treats both the empty and

loaded resonator modes is presented in this report. The

study centers on unstable resonators and. in particular,

strip resonators. The analysis of the bare cavity modes uses

a matrix expansion technique with the linear prolate

functions as a basis set. These functions form an optimal

basis set in that they are related to the Schmidt expansion

functions for the integral equation that describes the modes

of the bqre cavity. As a consequence, the matrix eigenvalue

problem is solved using the minimum number of basis

functions. The analysis is implemented in a numerical model

that generates the linear prolate functions using a finite

difference algorithm. The model is used to study the

validity of asymptotic technique at low Fresnel numbers. The

results show that the first few lower loss modes predicted by

the asymptotic approach are accurate but that the higher loss

modes are inaccurately represented by that approach. The

linear prolate function expansion is also used to numerically

demonstrate the orthogonality of the resonator modes.

The analysis of the modes of the loaded cavity begins

with Maxwell's equations and ends with a round trip integral

equation for the modes of a loaded strip resonator. The gain

is included in an additive term instead of a multiplicative
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term as frequently assumed in other analyses. This result

suggests that there is.a single loaded cavity mode, as

compared to the spectrum of bare cavity modes. The method of

stationary phase is used to obtain a geometrical optics

approximation to the integral equation, and the results of

the approximation show excellent agreement with past work. A

single gain sheet model of the integral equation is developed

and solved using an iterative technique. The model is used

to study the threshold and saturation behavior of the loaded

cavity, and the results are compared to previous studies. A

key result is that the power on the feedback mirror retains

the same fluctuations with equivalent Fresnel number that is

observed for the bare cavity mode eigenvalues in the bare

cavity analysis. Other results are discussed in the text.

An initial study of the mapping of the loaded cavity mode

*onto the bare cavity modes is presented, showing that the

"* higher loss modes may be significant in this mapping.
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I. Introduction

The laser (an acronym for 'light amplification through

stimulated emission of radiation') can conceptually be broken

into three major components: the pump, the gain medium and

the resonator. This dissertation is concerned with the

resonator. The resonator is an optical configuration that

allows for efficient, coherent extraction of the energy

stored in the gqin medium by the pump. However, the

resonator is an optical analog to the microwave waveguide,

exhibiting a complex longitudinal and transverse mode

structure. This analysis is aimed at an increased under-

standing of the transverse mode structure of empty and loaded

resonators. The applications of the analysis will be focused

on strip resonators. By strip resonators, one means a

resonator composed of two cylindrical mirrors of infinite

length, allowing one transverse dimension to be ignored in

the analysis. An empty resonator does not contain any

intervening medium, allowing an understanding of its inherent

modal properties, while a loaded resonator does contain a

gain medium that will alter the actual mode that would be

sustained in the laser.

Physically, the transverse modes of the resonator

(hereafter referred to as the modes) can be defined as any

field distribution that reproduces itself to within a complex

constant after a round trip through the resonator. A typical

two-mirror resonator is shown in Figure 2.1. A round trip in

this resonator consists of a reflection off mirror 1, a
D1
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propagation to mirror 2, reflection off mirror 2 and a return

propagation to mirror 1. If one uses scalar diffraction

theory to analyze this round trip, the modes are found to be

the eigenvalues of a homogeneous Fredholm integral equation

of the second kind, where the kernel characterizes the round

trip. This kernel is more fully discussed in Chapter 2. The

eigenvalue that is associated with each eigenmode accounts

for the outcoupling loss and the phase (and corresponding

frequency) shift of the mode. Several review articles are

available on the. general theory of optical resonators. (Ref 1-

4) Also, most textbooks on laser physics discuss the basic

properties of laser resonators, although these texts

frequently.limit the discussion to stable resonators while

this work will mainly deal with unstable resonators. (Ref

5,6) The difference between the two classes of resonators

will be made clear in Chapter 2.

This report is a summary of the research conducted in

the area of laser resonators. The goal is to develop a

consistent formulation of the modes of optical resonators,

thus increasing the understanding of the properties of

resonators. To accomplish this goal, two areas are

investigated.

The first area is a study of empty strip resonators

using a kernel expansion technique. The strip resonator is a

useful abstraction of the optical resonator that has mirrors

with cylindrical curvature in one dimension and infinite

extent in the other dimension. Since the round trip integral

2



equation separates in rectangular coordinates, the two

transverse modes can be treated independently, each acting

like a strip resonator in the absence of a saturable gain

medium. The kernel expansion technique is chosen because it

allows the calculation of higher order modes while minimizing

the approximations required to make such calculations.

The effects of including a saturable, distributed gain

medium that depends nonlinearly on the electromagnetic field

in the resonator is the second area to be investigated. The

derivation of the loaded cavity integral equation is valid

for a three dimensional resonator, although the strip

resonator is used for detailed examination of the resultant

integral equation. The integral formulation is chosen to

blend the earlier analysis of the empty resonator into the

analysis of the loaded resonator. A study of the empty and

loaded strip resonator modes will give new understanding of

how laser resonators behave.

This report is divided into four parts. Chapter II is

an analysis of the empty resonator. The chapter begins with

a discussion of the basic geometry and underlying assumptions

for the strip resonator. Then the round trip integral

equation that describes the modes is derived using scalar

diffraction theory. A discussion of several solution

techniques follows this derivation. The kernel expansion

technique is then applied to find the bare cavity modes,

using the linear prolate functions as a basis set. The

analysis is used to (1) examine the validity of the

asymptotic technique at low equivalent Fresnel numbers and

3
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(2) demonstrate the orthogonality of the strip resonator

modes. Chapter III begins the analysis of the loaded

resonators. The analysis begins with Maxwell's equations and

ends with an integral equation that describes the modes of a

general two mirror resonator. The results are specialized to

the strip resonator. The resultant equation suggests that

the loaded cavity mode can be expanded in the modes of an

empty strip resonator. In Chapter IV, we model the loaded

strip resonator'equation with a single gainsheet and examine

the behavior of the modes for several cases. The idea of the

bare cavity mode expansion is investigated for this special

case. The final chapter of this dissertation summarizes the

main conclusions and makes recommendations for future work.

44
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II. Analysis of the Modes of the Empty Strip Resonator

A. Introduction

In this chapter, we discuss an analysis of the modes of

a single-ended, aligned strip resonator that does not contain

a gain medium. The chapter begins with a review of the

geometry of the strip resonator and the assumptions inherent

in this configuration. Then the integral equation that

describes the mo.des is derived and discussed. A variety of

solution techniques are available to solve this equation and

they are reviewed briefly. The method that will be used in

this chapter is the kernel expansion. The basis set that is

used is the set of linear prolate functions, which have

several properties that make this set highly suited to

resonator analysis. After discussing this set of functions,

the modes of the strip resonator are found by solving a

matrix eigenvalue problem (MEVP). Several cases are studied

with the technique, and it is used to explore two areas of

interest not yet discussed in the literature. The first is a

check of the validity of the asymptotic analysis of the modes

at low equivalent Fresnel numbers. The second is a numerical

demonstration of the orthogonality of the modes, a property

that will be shown to be true analytically in Appendix 1.

The chapter concludes with a summary of the empty strip

resonator analysis. Some of the work discussed in this

chapter has been published in Applied Optics (Ref 21) and

4. Laser Digest (Ref 22).
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1. Geometry of Strip Resonators

The general strip resonator is shown in Figure 2.1.

(Many of the introductory comments and definitions in this

4• section also apply to resonators with two transverse

dimensions. However, the analysis that follows applies to

strip resonators and it is less confusing to restrict the

discussion to this class.) The two mirrors have radii of

curvature denoted by RI . (The subscript 'i' takes on the

values 1 and 2 for the two mirrors.) The mirrors are assumed

in this analysis to be aligned on an optical axis such that

the centers of curvature lie on the same line and the mirrors

extend an equal distance above and below this axis. The half-

width of the mirrors is denoted by aj . The mirrors are

separated by a distance L and frequently the two mirror

resonator is characterized in part by "g parameters" that are

defined by

L (2.1)

A combination of the g parameters that is also useful is

~ (2.2)

If one envisions a ray of light bouncing between the

mirrors, some combinations of g parameters tends to confine

all rays within the mirrors while other combinations allow

the rays to leave the resonator. (One can verify these ideas

6
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by simply sketching a few resonators with different

curvatures on the mirrors.) Resonators that tend to confine

the rays are called "stable" while those that do not confine

the rays are called "unstable". The stable region is defined

by

-1 < % < 1 (2.3)

and the unstabld region is any combination of g parameters

that do not meet this condition. Figure 2.2 shows the stable

and unstable regions. Stable resonators have many applica-

tions to lasers with low output power since the outcoupling

is usually done with partially transmissive mirrors.

Unstable resonators are more appropriate for high energy

lasers since these lasers have a large gain volume which

matches the large mode volume of the unstable resonators and

the energy can be outcoupled around the mirrors in unstable

resonators, allowing the mirrors to be cooled.

In addition, a useful dimensionless number called the

Fresnel number is defined for each mirror as

t k - --(2.4)

The Fresnel number can be interpreted as the number of plane

wave Fresnel zones on one mirror as seen from the center of

the other mirror. The number is important in diffraction

analysis. At low Fresnel numbers, the effects of diffraction

8
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strongly affect the beam profile predicted by geometric

optics while the effect is less at higher Fresnel numbers.

This impact is seen on the modes of the resonator. At low

Fresnel numbers, the intensity profiles of the resonator

modes are very different from the profiles predicted by

geometric optizs, while at high Fresnel numbers, the mode

profiles appear close to the geometric optics profiles except

for high spatial frequency, low amplitude ripples called

appropriately 'Fresnel ripples'. Other variations of

'Fresnel numbers 'are defined as needed, but they are all

related to this basic definition.

* .2. Basic Assumptions for Strip Resonators

A rigorous analysis of the electromagnetic fields that

are the modes of an open resonator at optical frequencies

should begin with Maxwell's equations. We will use this

approach in the next chapter, but in the bare cavity analysis

that follows, we use a number of assumptions that are

*. frequently made in the literature. Here we discuss these

. approximations qualitatively. A detailed quantitative

derivation is shown in Chapter III, where the loaded cavity

* analysis is done. In this chapter, we use the following

°. discussion to give some background on the well-known Fresnel

approximation. First, the "bare cavity" is assumed to be

- filled with a homogeneous, isotropic medium. The medium

* effects will be addressed in the next chapter. Second, the

fields are assumed to have an exp(i(wt-kz)) dependence.

Under these assumptions, the spatial variations of the fields

10
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are described by the vector Helmholtz equation. In Cartesian

coordinates, the equation separates for each field component.

Since we expect a beam-like behavior (as characterized by the

dependence chosen above), we further assume the field is

predominantly TEM and linearly polarized in the x

direction. Thus the scalar Helmholtz equation is

appropriate. Now, to further simplify the analysis, we make

the paraxial approximation. If the mirrors are separated by

many wavelengths (as they usually are at optical

frequencies), then this is a good approximation. The

resultant paraxial wave equation is equivalent to the two-

dimensional Fresnel diffraction analysis. In Cartesian

coordinate, this integral analysis of the bare cavity

separates for each transverse coordinate, i.e., the resonator

can be analyzed as two orthogonal strip resonators. In

Chapter III, this separation will no longer be valid when a

gain medium is included unless restrictions are placed on the

medium.

While these assumptions seem to be plentiful, they are

the usual string of assumptions made in most optical

analyses. Their validity is usually supported by having good

agreement with experiments, but in the cases of inhomo-

geneous, nonlinear or active medium, such agreement is not as

clear. Indeed, for high energy lasers, the agreement between

the bare cavity modes and the actual laser fields has not

S• been well established. These issues are more appropriate to

the next chapter. What we want to analyze here is the

natural or normal modes of the open resonator which are

. . . .. . . . . . . . . . , ! ... _ , 4'. - t * .".. .:A,.'. .- - *. °. ..- *



analogous to the modes of microwave waveguides. Indeed,

Vainstein analyzed the resonator as a highly lossy vaveguide.

(Ref 9) A final note: the resonator mode is characterized by

a longitudinal index that is defined by the number of half

integer wavelengths can be fit into the cavity and a pair of

transverse indices that denote differing transverse structure

on the basic longitudinal mode. (For a strip resonator there

would only be one transverse index.) Frequently one calls

the mode a "longitudinal mode" when the transverse structure

is ignored. Here we assume that we are studying the

transverse structure of a single longitudinal mode. The

actual laser might have a lasing transition that covers

several lohgitudinal modes with none of the modes exactly on

the line-center of the lasing transition. Each of these

possibilities complicates the analysis. In Chapter III, we

will assume the existance of one longitudinal mode that lies

at the same frequency as the line-center of the lasing

transition. With all these assumptions in mind, we proceed

with the analysis of the bare cavity modes.

B. Bare Cavity Round Trip Equation

As mentioned in Chapter 1, the transverse modes of the

resonator are frequently def.ined as the eigenfunctions of a

homogeneous Fredholm integral equation of the second kind

(FIE II). The associated eigenvalues are related to the

outcoupling and phase shifts of the eigenmodes. The general

form of the homogeneous FIE II is

12
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( = j'K(x.y y8y (2.5)

(Appendix 1 contains a brief discussion of the properties of

Fredholm integral equations of the second kind that are

required for the discussion of resonator modes in this

chapter and the next chapter.) The exact expression for the

kernel, K(xy), depends both on the nature of the resonator

(mirror separation, mirror reflectivities, etc) and the

sophistication of the analysis. For the strip resonator, the

kernel is given by

K (,Ky) e a (2.6)

This kernel is derived in Appendix 4, which deals with the

derivation of the loaded cavity round trip equation . The

bare cavity round trip equation is obtained by simply setting

the gain function to zero. The eigenfunction, u(x) , is the

scalar field at mirror 1 as shown in Figure 2.1. The

variables x and y are limited to the range (-a1 , a ).

It is important to bear this restriction in mind when using

this and other kernels related to resonator problems. The

Fresnel or paraxial approximation is made in this derivation.

This is valid as long as Q4/(2l) « 1. . This

approximation is usually good for realistic optical

resonators. For the analysis that follows, the strip

resonator will be assumed to be single-ended. This means

that the half-width of mirror 2 is assumed to be great enough

13
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that any transverse mode is essentially zero before the edge

of the mirror. This doesn't violate the Fresnel

approximation since we have restricted the types of field

that we will allow as valid modes and it allows us to let a.

tend to infinity. Then the integral in the kernel can be

evaluated analytically and the resulting kernel is

K y F (2.7)

where F = and the transverse coordinates have been

normalized by al

Let us examine the two kernels shown above in more

detail. Ej(2.6) shows the kernel for a double-ended strip

resonator, while Eq(2.7) shows the kernel for a single-ended

strip resonator. Notice that no assumptions have been made

as to whether the resonator is stable or unstable. The

kernels describe both cases. Note that the kernels are both

complex-symmetric but not hermitian. This property means

that the eigenvalues, if they exist, are complex. Also, the

eigenfunctions do not form a complete set on the interval of

the integration, namely (-a. , al ). This fact is well

documented in the literature although a recent paper

attempted to show otherwise. -(Ref 10,11) The lack of

completeness will affect the analysis of the eigenfunctions

discussed in a later section. Further, the eigenfunctions,

if they exist, obey an "orthogonality" relation different

from the usual "power" relation used for the eigenfunctions

14
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of hermitian kernels. (This property has been called

"biorthogonality" in some papers. (Ref 55)) Here, the

relation is

-0 (2.8)

(See Appendix 1 for a proof of this relationship. A similar

proof shows the eigenvectors of a complex-symmetric matrix

are also orthogonal in the sense that the inner product

satisfies (u, ,u ) 5 .) The existence of solutions to

the integral equation that describes the resonator modes has

been fully established in the literature. (Ref 10,12-14)

However, no proof has been shown that an infinite number of

solutions exists for unstable resonators, although the modes

of a stable strip resonator can be accurately approximated by

the infinite, complete set of hermite-gaussian polynomials.

The amplitude of the eigenvalue is related to the loss

of the particular mode. The phase of the eigenvalue is

interpreted as a frequency shift for the particular mode from

the input frequency of the kernel. (Ref 5) Thus the

eigenvalues contain a great deal of information about each

mode. Plots of the amplitude of the eigenvalues reveal

trends that are useful in designing resonators. We will use

such plots later in this chapter as the means to verify

numerical models of bare resonators.

This concludes the discussion of the integral equation that

describes the modes of the strip resonator. Many of the

comments made concerning the complex-symmetric kernel apply

15



to more general configurations. We next discuss various

techniques that have been used to solve the integral equation

for the modes. This review is necessarily brief. The

transformation of the integral equation to a matrix

eigenvalue problem (MEVP) is used as the common thread

between the various techniques.

C. Methods of Finding the Modes of Empty Resonators

A number of ingenious techniques have been employed in

the past to solve the resonator integral equation. These

techniques include the iterative scheme used by Fox and Li

(Ref 15), the various matrix methods (Ref 16-18, 53) and the

asymptotic techniques (Ref 19-21). As Sanderson and Streifer

pointed out (Ref 22), most of the techniques transform the

integral equation that describes the modes into a matrix

eigenvalue problem. It is this formalism that we will use to

review some of these techniques. (One technique that does not

readily fit this formalism is the waveguide analysis done by

Vainstein (Ref 9) but this approach will not be reviewed

here.)

The general transformation from the integral equation to

a matrix eigenvalue problem is reviewed here. Our treatment

follows that of Sanderson and Streifer. Consider two sets of

complete and orthonormal functions, v,(x) and w,(x) ,

defined on the interval of interest. Here the interval is

(-a,a). (Note that a complete and orthonormal set of

functions can always be constructed from a complete set by

-4
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the Gram-Schmidt orthogonalization process.) Then the kernel

of Eq(2.5) is expanded in a convergent infinite series:

KIxI) =1. K, v,'W (2.9)

(Note that the kernel is not assumed to be separable. The

coefficients in the expansion are matrix elements. By

properly choosing the basis functions, one might be able to

make this matrix of coefficients diagonal, thus finding a

basis set in which the kernel is separable.) The

eigenfunction is similarly expanded:

,.U M() VV owpC (2.10)

" p=O

Substituting these equations into Eq(2.5) and then

multiplying both sides by w (x) and integrating over x

one obtains a matrix eigenvalue problem:

,. where

* P Z S dX VV (I) \vn -A (2.12)

*2 The difficulty lies in evaluating these matrix elements for a

particular basis set. Since the kernel is symmetric in x

and y ,some simplification results from choosing wft v .

Then the coefficient matrix K retains the symmetry of the

17



kernel, namely K,= Ke . The difficulty now is the

choice of the basis set. If Dirac delta functions are used,

one obtains the Fox and Li formulation. Other authors have

used the Hermite-gaussian functions (Ref 16), power series

(Ref 23) and other functions to evaluate the matrix elements.

The asymptotic method is a method where an incomplete set is

used. This set is generated by applying the method of

stationary phase to a form of the integral equation, Eq(2.5).

(Ref 19, 24) Even though this set has not been shown to be

complete, the analysis leads to a polynomial equation for the

eigenvalues and the expansion coefficients. Thus this method

diagonalizes the matrix whose eigenfunctions we seek to find.

A considerable savings in computational time results.

However, use of this basis set may lead to inaccurate higher

order eigenfunctions and eigenvalues. This will be one area

investigated in this chapter.

As Sanderson and Streifer point out, the optimal basis

set is one that approximates the modes of the resonator as
V.

closely as possible. (Ref 22) (We require the basis set to

be a complete, orthonormal set of functions on the finite

interval (-a,a). The modes of the resonator do not meet

either of these conditions, being neither complete nor

orthogonal in the usual sense.) Since this requires

knowledge of the modes before they are calculated, the basis

set can be chosen instead to provide the best approximation

to the kernel when the series in Eq(2.9) and Eq(2.1O) are

truncated at some value, say N. Streifer has shown (Ref 25)

that the Schmidt expansion functions are this optimal basis

18
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set. If this basis set is used, the coefficient matrix in

Eq(2.9) becomes diagonal and the truncated series is the best

N-term approximation (in the mean square sense) for a given

value of N . For the strip resonator, this basis set is

related to the linear prolate functions. Since this basis

set leads to integrals in the matrix elements that cannot be

evaluated analytically, it has not yet been used in

evaluating the modes of strip resonators. However, the

linear prolate functions will be used in this investigation

as a basis set to find the strip resonator modes. The

analysis is found to be straightforward and the solutions are

as accurate as other methods.

We no* pause to review the linear prolate functions,

their properties, and the numerical method used to calculate

them. Following this discussion, the specific matrix

eigenvalue problem using this basis set will be derived.

After verifying that the implementation is correct by

comparing results with other work, two areas will be studied.

The first area is the study of the validity of the asymptotic

approach at low equivalent Fresnel numbers. The second area

is the demonstration of the orthogonality of the strip

resonator modes as discussed earlier in this chapter. (See

Eq(2.8).)

D. The Linear Prolate Functions

This section is broken into three parts. The first part

19
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discusses the defining equations for the linear prolate

functions (LPF). The second part covers the properties that

will be used in the modal analysis that follows this section.

The third part is a discussion of how the linear prolate

functions are calculated numerically.

The linear prolate functions are related to the prolate

spheroidal wave functions that arise when the wave equation

is separated in prolate spheroidal coordinates. However,

there is no advantage to examining this connection and it is

entirely adequate to consider the LPF as a set of special

functions defined by the equations given below. Although the

*' following discussion is fairly detailed, the interested

reader is referred to the literature where a number of

excellent references go into far greater detail. (Ref 26-33)

The book by Flammer (Ref 26) is an excellent work on the

prolate spheroidal functions. The chapter by Freiden in

Progress in Optics (Ref 27) is very complete summary of the

linear prolate functions and much of what follows is based

upon this reference.

1. Defining Equations

The linear prolate functions can be considered as

solutions to a Sturm-Liouville differential equation,

@L _ 17-~C1 ~(cc 0 (2.13)

where the boundary conditions are chosen such that the LPF

remain finite at +1. A family of LPF is characterized by the

20



parameter c , and each LPF within the family is

characterized by the eigenvalue of the differential equation,

1'.The dependence of each LPF on the parameter c is

implicit in every application of the LPF and the subsequent

notation may not explicitly show this dependence.

The LPF can also be defined as the eigenfunctions of the

finite-Fourier transform: (Ref 27,29)

LR .1 j P_(2 14C

Here, the LPF are characterized by a second eigenvalue, Y .

A third equation that could be used to define the LPF is

the first iterate of Eq(2.14). This equation is found by

multiplying Eq(2.14) by exp(-icxz) and integrating over x

ayY (2.15)

The intimate connection between the LPF and the modal analy-

sis of resonators is highlighted by the fact that Eq(2.15) is

the equation for the modes of the stable, confocal resonator.

In this case the LPF actually are the modes of the resonator.

We will later find another class of resonators that have LPF

as exact solutions.

Figure 2.3(a-o) show the first fifteen LPF for the case

where c - 3.5903916. Notice that each LPF is characterized

by a large peak on the semi-infinite interval and lower

*: amplitude oscillations elsewhere. Also note that this peak

21
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moves out to larger values of x as the index of the LPF

increases. For some value of the index, the LPF will be

nearly zero in the interval (-I,I) and one expects LPF of

this index or larger to contribute little to the mode of the

resonator. We will find this to be supported by later

results. Finally, note that the LPF are even for even index

and odd for odd index.

2. Properties of the LPF

° We now consider the properties of the LPF. The

functions are real-valued functions and the two eigenvalues

associated with them are real. The eigenvalue of the

differential equation increases with increasing index:

F0 > 7"o  ('-< "(2.16)

Figure 2.4 is a plot of this eigenvalue as a function of

increasing index. The integral equation eigenvalue exhibits

a markedly different behavior. Figure 2.5 shows this

behavior. A good approximation to this sharp cutoff is

~~ (2. 17)

where nc-- . This steplike behavior is very useful in

many applications of the LPF. Another property that will be

used is the orthogonality of the LPF over the finite

interval.
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4X Ynx +.4 sr (2.18)

The LPF also are orthonormal on the infinite interval.

Since the LPF satisfy a Sturm-Liouville problem, they

are a complete set on the finite interval. (The LPF are

square-integrable functions in the space L. with the norm

shown above.) This completeness shows that the kernel

expansion and expansion of the eigenfunction discussed in

Eq(2.9) and Eq(2.10) are convergent series (and converge to

the desired functions) when the LPF are used as a basis set.

Frieden also shows that the LPF are complete on the infinite

interval. (Ref 27)

A property that will be very useful in the analysis of

the strip resonator modes is the expansion of the kernel of

the finite Fourier transform in LPF:

;m c2it
';: e " x. t X tyo • (2.19)

This expansion is easily obtained from the defining integral

equation, Eq(2.14), and the orthogonality property, Eq(2.18).

This concludes the review of the properties of the LPF

relevant to the analysis of the strip resonator. We now turn

our attention to how the LPF are generated numerically.

3. Numerical Generation of the LPF

One disadvantage that has plagued the LPF is that they
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have been difficult to generate numerically. One must

evaluate an infinite series expansion for the eigenvalues as

well as the eigenfunctions in order to obtain highly accurate

values for the LPF. Van Buren has written a code that does

precisely this. (Ref 34) However, if one desires knowledge

of several LPF over a wide range of arguments, such an

approach requires too much computer time and memory to be

practical. We have developed a method that produces a large

set of LPF on the interval (-1,1) with good speed and

accuracy. This method should be of use to other researchers

using the LPF. The approach taken is first to use the Van

Buren code to generate the two eigenvalues and two endpoints.

For even LPF, the values at x - 0 and x - 1 were used; for

odd LPF the slope at x - 0 and the value at x - 1 were

used. Then these values were used in a finite difference

code that generated the LPF over the interval (-1,1) by

solving the differential equation, Eq(2.13). A nonuniform

grid was required when generating the LPF because of the

large peak discussed earlier. The requirement for a

nonuniform grid is more clearly seen by considering the

differential equation Eq(2.13) when X =  . Then a

differential equation for the derivative of the LPF can be

written.

-x) 0 (2.20)

The solution is
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e (2.21)

When XzI , the LPF has a steep slope. Thus a nonuniform

grid was required to follow this variation accurately.

Finally, the required number of points in the grid was

determined by requiring accurate representation of the LPF.

The orthogonality relation was used as the accuracy require-

ment. The numerically generated LPF were squared and

integrated on the interval (-1,1). The result was compared

to the integral equation eigenvalue. As long as these values

agreed to within one percent for the range of LPF of

interest, the basis set was found to be accurate enough for

the strip resonator modelling.

We now return to the problem of finding the modes of a

strip resonator. The next section deals with the derivation

of the matrix eigenvalue problem. Following this section,

the matrix eigenvalue problem is solved and several useful

results are discussed.

E. Derivation of the Matrix Eigenvalue Problem

Consider the application of the kernel expansion using

the LPF as a basis set to solve the round trip equation for

an aligned, single-ended, strip resonator. Recall that this

equation is
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Note that when g = 0 this equation is identical in form to

the defining integral equation for the linear prolate

functions, Eq(2.14). This case occurs when, for a single-

ended resonator, the feedback mirror (mirror 1) is confocal

with its image in the back mirror (mirror 2). This family of

resonators lies on two hyperbolae in the stable region of the

g.- g. stability diagram. (See Figure 2.2) This special

class of resonators which have the LPF as exact solutions has

not been noted previously in the literature.

We now transform Eq(2.22) into the Horwitz standard

form. (Ref 19) The details are contained in Appendix Z. The

resultant integral equation is

it iYM)Y, (2.23)

where the eigenfunctions are related by

%Aw =V- (- (2.24)

and where the effective Fresnel number is defined as

IF (2.25)

The magnification is defined by

S"(2.26)

with 'W MF and C
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Note that Eq(2.23) is most applicable to unstable

resonators because of the definition of magnification, and

the discussion that follows assumes the strip resonator is

unstable. However, note that in the stable region, g ( 1 ,

and the magnification becomes a complex number of magnitude

one and the effective Fresnel number becomes pure imaginary.

The exponential factor in Eq(2.24) is then gaussian, and the

notion of Hermite-gaussian functions for the stable resonator

modes arises naturally. (In Appendix 6, we derive a KEVP

from Eq(2.22) directly. This MEVP is more applicable to

stable strip resonators. In Appendix 7, we derive a MEVP for

a resonator with cylindrical symmetry using the circular

prolate functions (CPF) as a basis set.)

Next, we expand the exponent in Eq(2.23). Defining c -

2t/M and using the expansions,

e iC...: A * *(Y') (-j) (2.27)
'- =0 '

and

vWx FZ 11 ' (2.28)

one can obtain a matrix eigenvalue problem (MEVP) for the

strip resonator modes. (Again, the details are contained in

Appendix 2 .) The choice of the particular expansion in

Eq(2.28) causes the resultant MEVP to have the same complex-

*: symmetric nature that the integral equation had. The MEVP is
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where

-I

Since the complex-symmetric nature is retained, the

*- eigenvectors of this matrix exhibit the same orthogonality

property that the eigenfunctions had. The solution of the

MEVP gives the eigenvalues of the bare cavity modes and the

expansion coefficients 6. " These coefficients are used to

reconstruct the bare cavity modes via this equation:

ekx 6 , (2.31)

Clearly we obtain all the modes only in the case where the

.EVP is infinite-dimensional. In practice, the

. dimensionality is finite, and restricts the number of bare

-- cavity modes that are accurately modelled. We now turn our

* attention to solving this MEVP and studying a problem of

*" interest, the accuracy of the higher order modes as calcu-

- lated by the asymptotic approach.

, F. Solution of the Matrix Eigenvalue Problem

* In this section we discuss how the matrix eigenvalue

problem derived in the previous section is solved for several

,- cases. The goal is to show the validity of the LPF
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expansion, to exhibit its limitations and to obtain a tool to

study the modes of a empty strip resonator. The MEVP was

solved on a Control Data Corporation Cyber series computer

available through the Aeronautical Systems Division at Wright

Patterson AFB, Ohio. All computer codes were written in

FORTRAN IV and the International Mathematics and Scientific

Library (IMSL) subroutines were used whenever possible.

Prior to generating the matrix and finding the

eigenvalues and expansion coefficients, it is necessary to

generate the LPF as a basis set. This process was described

earlier in Section D, Part 3. The LPF were stored on a disk

file to be accessed by the MEVP code.

The matrix eigenvalue problem was solved in a

straightforward manner. Since the aligned resonator modes

can be separated into even and odd parity modes, the size of

the matrix can be reduced by calculating only the matrix

elements necessary for the parity of interest. In the code

developed for this research, the even modes were found first

and then the odd modes were computed. An additional

advantage to having the symmetric matrix is that only the

upper triangle of the matrix needs to be generated. Of the

elements, only N2.)/ need to be calculated. Once

the matrix is generated, the IMSL routine "EIGCC" was used to

find the eigenvalues and eigenvectors. The eigenvalues are

those for the Horwitz standard'form and need to be divided by

the square root of the magnification to obtain the usual

eigenvalues. The eigenvectors were written to a disk file

for use by another program to generate the bare cavity modes
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and obtain intensity and phase plots.

Clearly, the matrix size must be limited to some

dimension, N. The smaller the value of N, the faster the

MEVP can be solved, but fewer bare cavity modes are

accurately modelled. (If N is too small, none of the modes

are accuratelyu modelled. See Eq(2.32) below.) Streifer

showed that the linear prolate functions are the basis set

that allows the lowest value of N since these functions are

related to the Schmidt expansion functions for the bare

cavity kernel. (Ref 25) In practice, we found that to

adequately resolve the eigenvalue of the lowest loss mode, N

needed to satisfy the relation

N C(2.32)

b'.

In terms of the Fresnel number, F -5-IL, this relation is N'F.

However, in order to obtain the higher order modes and the

expansion coefficients, N needs to be larger than this. No

specific criterion was apparent in the studies and each case

should be treated separately. By looking at the magnitude of

the expansion coefficients of mode of interest, and insuring

that the smallest coefficient is at most a ten-thousandth of

the largest coefficient, one is reasonably sure that the mode

is accurately modelled. Each case studied in the next.4

section used a value of N that was sufficiently large that

the use of additional LPF did not alter the eigenvalues by

more than 0.01% or visibly alter the intensity profiles of
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the bare cavity modes.

G. Results

In this section we study a number of topics that utilize

the analysis of the previous sections. First, we study the

numerical convergence issues for the particular case of -2.5

and F O =0.6 . This study exercises the codes and exhibits

their limitations. This particular case was chosen for two

reasons: (1) the-value for c is small, so the matrix was

small, allowing many runs for low cost, and (2) the case has

been cited in the literature by several authors. (Ref 1, 35,

and 36) Second, we validate the analysis and the codes by

comparing the results obtained with different solution

techniques for several different cases. The techniques used

were the iterative approach where the integral equation is

solved with the method of successive approximations (MOSA),

the asymptotic approaches of Moore and McCarthy (Ref 20) and

Horwitz (Ref 19), and the kernel expansion using the LPF.

The MOSA approach only yields the lowest loss mode and

eigenvalue. Also, for specific cases, comparison could be

made with other published data or data provided by Dr. Alan

Paxton of the Air Force Weapons Laboratory, Kirtland AFB, NM.

Third, we study the behavior of the eigenvalues near a mode

crossing where the two lowest loss eigenvalues have nearly

the same magnitude. The crossing that was analyzed occurred

near M=3 and i.71U. Fourth, the kernel expansion

technique, now thoroughly validated, was applied to examining

the validity of the asymptotic approach at low effective
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Fresnel numbers. This study is significant because of some

of the assumptions made in the asymptotic analysis. The

section concludes with a numerical demonstration of the

orthogonality of the eigenmodes of the strip resonator.

Although this property can be shown analytically (see

Appendix 1), it serves as an additional validation of the

computer codes and is of some use in the study of loaded

cavity modes.

1. Numerical Convergence

We consider the case of M-2.5 and -0.6 The

issue is how many points and how many LPF are needed to

obtain accurate results. First, note the parameter c can

be calculated using the equation

C (2.33)

This particular case was chosen because the value of c is

low, namely, c - 3.5903914. Also, Rensch and Chester have

studied this case and their work has been cited by other

authors. The cut-off criteria given in Eq(2.32) indicates

that N should be about 3 in order to accurately give the

lowest loss eigenvalue. In order to validate the results, we

examine the case where N is much larger than this value.

An N of 14 was found adequate to resolve the first

several eigenvalues (by comparison to other methods). Also,
'"

one needs to have a suitably fine grid. For this case, we
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find that having 250 points or more in a nonuniform grid

which is finer near *1 provides adequate resolution.

However, as a baseline, we use 723 points to insure good

resolution. Using these parameters, we solve the matrix

eigenvalue problem. Table II-1 shows the eigenvalues

obtained. We choose the usual convention that the

eigenvalues be ordered by magnitude. Higher order

eigenvalues were obtained but are not shown because (1) they

may not be adequately resolved and (2) they are of such a

high loss that they are not of practical interest. Figures

2.6 and 2.7 show the intensity and phase of the lower loss

modes. In the next subsection, we compare these results to

those obtained from other methods to check the external

consistency of the LPF expansion. Here we focus on internal

consistency. As noted earlier, these modes are constructed

using the linear prolate function expansion. Thus, studying

the behavior of the expansion coefficients tells us if

convergence has been obtained. Table 11-2 contains data for

various number of LPF being used in the expansion. The

coefficients listed are the first eight coefficients for the

expansion of the lowest loss mode. The eigenvalues are also

listed. The entries are listed by magnitude and phase. The

number of points used in the nonuniform grid was 547. Two

facts are readily evident from Table 11-2. First, the

magnitude of the coefficients decreases for higher order LPF.

Second, the addition of more LPF in the expansion does not

alter the coefficients of the lower order LPF. ALso, note

the eigenvalue of the lowest loss mode has converged when
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TABLE II-1.

Magnitude of the Mode Eigenvalues
M = 2.5 F -f 0.6

mode kernel asymptotic iterative
index expansion expansion technique

0 1.19 1.18 1.19

1 0.83 0.81 --

2 0.60 0.61 -

3 0.30 0.46 -

4 0.09 0.42 -
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four LPF have been included in the expansion. This is in

good agreement with the criteria established in Eq(2.32).

Similar behavior in the coefficients and the eigenvalues are

observed for the higher order modes. Although no precise

criteria was evident as to when enough LPF have been included

for a particular higher order mode (owing to the small number

of cases studied), the coefficients exhibit a sharp decrease

in magnitude after a certain order of LPF. Table 11-3 shows

the magnitude of the expansion coefficients of the first

eight modes for the case at hand. The sharp decrease is

evident. This decrease mirrors the behavior of the integral

equation eigenvalue of the LPF and it is the primary reason

to consider the LPF as an expansion set. The cases studied

to date indicate that the higher order mode has been

adequately modeled when the magnitude of the higher order

coefficient has decreased four orders of magnitude. This

criteria should be treated as a rule of thumb and not a firm

cut-off.

We next turn to examining the number of points required

to obtain convergence. Here, the major source of error is

the numerical generation of the LPF. The errors in the LPF

show up in the calculation of the matrix elements and thus in

the eigenvalues and eigenvectors. In fact, a very slight

deviation from even or odd parity became evident when the LPF

expansion was used to confirm numerically the orthogonality

relation of the bare cavity modes. This point will be

discussed in greater detail later.) In all the mode
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calculations discussed in this report, the LPF were

calculated so that the eigenvalue, 8, , calculated by

numerical quadrature was within one percent of the value

obtained from the series expansion for the range of LPF of

interest. Table 11-3 shows how the expansion coefficients

and eigenvalue of the lowest loss mode varied as more points

were taken. From this table, we conclude that 375 points

appears to be adequate for the calculation of both the

eigenvalue and the expansion coefficients. All the

calculations made to date indicate that the numerical

convergence is well-behaved and that the matrix eigenvalue

problem can be readily solved. However, one is forced to

concede that the criterion given in Eq(2.32) grows rapidly

with increasing Fresnel number. Thus, the kernel expansion

is limited inevitably by the size of the matrix required to

adequately model the modes of interest. When the matrix gets

very large, alternate techniques of extracting the dominant

modes and eigenvalues may become more useful. Such

techniques include the Krylov or Prony technique used by

Siegman and Miller. (Ref 17) As an aside, it is noted that

this behavior is not unique to kernel expansion techniques.

2. Validation of Approach

The kernel expansion technique using the linear prolate

functions as a basis set can be validated by comparison to

solutions obtained by other authors or other approaches. We

study here the cases of ( H , Fe ) - ( 10.0 , 0.225 ),

( 2.5 , 0.6 ), ( 3.0 , 1.8742 ), ( 2.0 , 2.0 ),
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( 10.0 , 2.7 ), ( 2.0 , 2.5 ), and ( 2.0 , 4.0 ). These

cases are ordered in increasing t w vhere

+ ?- (2.34)

This parameter is used since it is the parameter of the

asymptotic expansion used in the evaluation of Eq(2.23). The

values of t for the cases listed above are, respectively,

1.43, 4.49, 13.2479, 16.8, 17.1, 20.9 and 33.5. Tables 11-4

to II-10 list the magnitudes of the eigenvalues for these

cases. In each table, results are included from an iterative

calculation (except in the case of a mode crossing), an

asymptotic calculation, and the LPF expansion. In the fourth

and sixth cases, results are included from a paper by

Henderson and Latham (Ref 18) where they calculate the even

parity mode eigenvalues only.

A few general comments apply to most of these cases.

The eigenvalues are ordered by decreasing magnitude. No

definite pattern existed as to how the parity of the modes

was ordered except that the lowest loss mode is always of

even parity. The LPF expansion and the results from

* Henderson and Latham indicate that the eigenvalues will

continue to decrease in magnitude without limit. However,

the asymptotic approach predicts the eigenvalues decrease to

a nonzero limit. This difference seems to be caused by an

inherent approximation in the asymptotic approach. (Ref 17)

*We address this difference in more detail later.
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TABLE 11-4.

Comparison of Eigenvalues
H 1 10 Feff - 0.225 t = 1.43

1 approach magnitude phase parity

0 L 1.2238 0.3169 even
A 1.3336 0.2874
P 1.2238 0.3169

1 L 0.1189 1.4893 odd
A 0.1648 1.6052

2 L 0.0050 -3.1235 even
A 0.0834 -2.5736

3 L 0.0001 -1.5204 odd
A 0.0136 -1.7981

NOTE: L - linear prolate function expansion
A - asymptotic approach (Ref 19)
P - power method (Ref 15)
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TABLE 11-5.

Comparison of Eigenvalues
M - 2.5 Feff - 0.600 t - 4.49

1 approach magnitude phase parity

0 L 1.1874 -0.1428 even
A 1.1829 -0.1791
P 1.1875 -0.1428

1 L 0.8249 0.1080 odd
A 0.8059 0.0612

2 L 0.6008 1.0130 even
A 0.6120 0.9763

3 L 0.3048 2.4379 odd
A 0.4551 2.2756

4 L 0.0887 -2.0817 even
A 0.2132 * -1.9724

* matched by phase

NOTE: L -linear prolate function expansion
A - asymptotic approach (Ref 19)
P - power method (Ref 15)
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TABLE 11-6.

Comparison of Eigenvalues
H - 3.0 Feff - 1.8742 t - 13.2479

1 approach magnitude phase parity

0 L 0.7762 -0.2472 even
A 0.7691 -0.2654
P. -- • __ •

I L 0.7758 0.2066 even
A 0.1648 1.6052

2 L 0.6155 -0.4191 odd
A 0.6206 -0.4408

3 L 0.4981 2.9994 even
A 0.4799 2.9997

4 L 0.4502 1.4978 odd
A 0.4488 1.3443

5 L 0.3451 -2.8463 odd
A 0.4024 -2.5378

6 L 0.0867 3.0994 even
*. A 0.2620 ** 2.9477 **

* no convergence with power method at mode crossing
** mode matched by phase

NOTE: L = linear prolate function expansion
A - asymptotic approach (Ref 19)
P - power method (Ref 15)
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TABLE 11-7.

Comparison of Eigenvalues
M = 2.0 Feff - 2.0 t = 16.8

1 approach magnitude phase parity

0 L 1.0171 0.1440 even
H&L 1.0166 0.1436
A 1.0166 0.1475
P 1.0169 0.1444

1 L 0.8655 -0.4050 even
H&L 0.8648 -0.4053

0.8611 -0.3896

2 L 0.8000 -0.4593 odd
A 0.8003 -0.467

3 L 0.7249 0.6887 odd
A 0.7498 0.6891

4 L 0.6764 -2.0729 odd
A 0.6250 -1.9121

5 L 0.6389 -2.3080 even
H&L 0.6390 -2.3056
A 0.5706 * -2.2367 *

6 L 0.5631 1.4217 even
H&L 0.5676 1.4226
A 0.5815 * 1.4408

7 L 0.4281 2.3134 odd
A 0.5309 * 1.9765 *

8 L 0.2576 -2.7802 even
H&L 0.2765 -2.8085

10 L 0.0866 -0.8142 even
H&L 0.0865 -0.8145

* mode matched by phase

NOTE: L - linear prolate function expansion
H&L a moment method (Ref 18)

A - asymptotic approach (Ref 19)
P - power method (Ref 15)
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TABLE 11-8.

* Comparison of Eigenvalues
M -10 F eff ' 2.7 t - 17.1

1 approach magnitude phase parity

0 L 0.9867 -0.1490 even
A 0.9821 -0.1510
P 0.9869 -0.1492

1 L 0.2863 1.0585 even
A 0.2887 1.0248

2 L 0.2620 -0.1299 odd
A 0.2420 -0.1632

3 L 0.1856 2.6926 odd
A 0.1853 2.5633

4 L 0.0164 -3.0127 even
A 0.1036 -2.9009

NOTE: L - linear prolate function expansion
A a asymptotic approach (Ref 19)

4,P - power method (Ref 15)
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TABLE 11-9.

* Comparison of Eigenvalues
*H 2.0 F eff - 2.5 t a 20.9

1 approach magnitude phase parity

0 L 1.0770 -0.0437 even
H&L 1.0762 -0.0434
A 1.0800 -0.0449
P 1.0771 -0.0436

1 L 0.7966 0.0993 odd
A 0.7925 0.1065

2 L 0.7364 0.6257 even
H&L 0.7448 0.7936
A 0.7545 0.6257

3 L 0.7286 -1.0775 odd
A 0.7062 -1.0752

4 L 0.6780 -1.0873 even
H&L 0.6753 -1.0829
A 0.6666 -1.0727

5 L 0.6648 -3.1372 odd
A 0.6525 -3.1400

6 L 0.5858 1.4153 odd
A 0.6410 1.4488

7 L 0.4882 -2.9229 even
H&L 0.4656 -2.3702
A 0.5125 * -2.584*

*mode matched by phase

NOTE: L - linear prolate function expansion
H&L - moment method (Ref 18)
A - asymptotic approach (Ref 19)
P = power method (Ref 15)
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TABLE II-10.

Comparison of Eigenvalues
M- 2.0 F eff- 4.0 t - 33.5

1 approach magnitude phase parity

0 L 1.0103 0.1395 even
A 1.0041 0.1312
P 1.0080 0.1412

1 L 0.8907 -0.2741 even
A 0.8745 -0.2798

2 L 0.8264 -0.3177 odd
A 0.8208 -0.3408

3 L 0.8051 0.5725 odd
A 0.8012 0.5799

4 L 0.6630 1.0926 even
A

5 L 0.6434 -1.5555 even
A 0.6488 -1.5651

6 L 0.6158 2.7015 even
A 0.6291 * 2.6988 *

7 L 0.6020 -1.4957 odd
A 0.6361 * -1.5411 *

8 L 0.5323 1.7890 odd
A 0.6023 * 1.7545 *

9 L 0.5318 -3.0623 odd
A 0.5788 * -2.8552 *

* mode matched by phase

NOTE: L - linear prolate function expansion
A - asymptotic approach (Ref 19)
P - power method (Ref 15)
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We now briefly examine the various cases listed above.

. The first case, tMo.o and F =o.x , has low values of

[ both c and t . Thus the size of the matrix required is

small and both the matrix and iterative schemes are in good

agreement. However, the asymptotic code predicts eigenvalues

that generally disagreed with the other approaches. This

confirms that the asymptotic approach is not valid at very

low Fresnel numbers. The intensity profiles from the

iterative code and LPF expansion agreed as well.

The next case, M=2.5 and FO.G , was the case

studied most closely. As Table 11-5 shows, all three methods

gave the same lowest loss eigenvalue to three significant

digits. Even though t - 4.49 , the LPF expansion and the

asymptotic qode agreed well for the first two lowest loss

eigenvalues. The intensity and phase plots of the eigenmodes

agreed well for the first three modes. In addition,

calculations made by Dr Paxton of the Air Force Weapons

Laboratory for this case predicted the same lowest loss mode

.* shape. However, the mode shape doesn't agree well with the

" same case as calculated by Rensch and Chester. (Ref 35) In

Ref 35, an aperture is placed at the back mirror and thus

more spatial structure is introduced in the mode. Note that

the LPF expansion and the asymptotic method give very

different eigenvalues for the higher order modes. In fact,

some of the solutions given by the asymptotic method seem to

be spurious solutions that do not correspond to any mode

predicted by the LPF expansion.

The third case, Mu3.0 and F ', was chosen
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because this case is very near a mode crossing, where the two

lowest loss mode eigenvalues have the same magnitude. This

case will be discussed separately after this brief review of

the various cases. We restrict our examination here to the

close match between the LPF expansion and the asymptotic

method. Note first that the iterative approach takes an

extremely long time to converge near a mode crossing. Near a

mode crossing, the outcoupling between the two lowest loss

modes is so nearly identical that the code cannot efficiently

discriminate between them. (The same problem arises in the

study of stable resonators using the iterative method.) Now

the LPF expansion and the asymptotic method give good

agreement out to the fourth even eigenvalue, but after this

eigenvalue, the two codes disagree. The eigenvalues

predicted by the LPF expansion continue to decrease toward

zero but the asymptotic approach predicts eigenvalues that

tend to a finite limit. Note also that the asymptotic

approach predicted the mode crossing at F = 1.8675 for M

= 3.0 while the LPF expansion predicted the mode crossing at

- 1.8742. The difference is most likely due to the low

effective Fresnel number which is near the limits of the

asymptotic approach.

Let us examine the cases of H - 2.0 , -Fa - 2.0 and

H - 2.0 , e - 2.5 at the s4me time. Here we can use the

results given by Henderson and Latham as an additional

comparison. (Ref 18) However, note that they only consider

even parity modes. In both cases, good agreement is found
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between the four methods for the lowest loss mode. The LPF

expansion and the matrix method used by Henderson and Latham

agree well to the limit of the data available. In the first

case, this is at the tenth eigenvalue while the second case

is limited to the seventh eigenvalue. The asymptotic code

predicted eigenvalues in good agreement with the other two

methods, except at the higher order eigenvalues the

asymptotic code gave many possible eigenvalues that all have

about the same magnitude. In some instances, one could not

even match any values to the eigenvalues predicted by the LPF

* expansion. One should observe that the value of t is large

enough in both cases that the asymptotic method should be

valid. We conclude that the first few lower loss eigenvalues

predicted by. the asymptotic approach are probably accurate,

but advise caution if the higher order eigenvalues (and

* eigenmodes) are to be used.

We examine the case of M a 10.0 and F 2.7 because itCffi

allows an examination of eigenvalue behavior at large

magnification. Here, the LPF expansion, the asymptotic

approach and the iterative approach all agreed well for the

lowest loss eigenvalue. The LPF expansion and the asymptotic

approach agreed well through the third eigenvalue but for

higher loss modes, the eigenvalues did not agree. Those

predicted by the asymptotic approach level off and those

*" predicted by the LPF expansion continue to decrease toward

* zero. Again, this behavior is most likely due to the

approximations made in the asymptotic approach, as pointed

out by Horwitz. (Ref 19)
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Finally, we look at the case of H - 2.0 , F 4.0

This case was at the limit of the LPF expansion code due to

memory limitations imposed by the computer system. As seen

from Table II-10, the lowest loss eigenvalue is predicted to

be about 1.01 by the three techniques (LPF expansion,

asymptotic approach and iterative approach). Fairly good

agreement was found between the LPF expansion and the

asymptotic approach up to the fifth eigenvalue. After this

value, the asymptotic code predicts eigenvalues with

magnitude of about 0.6 to 0.55, while the LPF expansion

predicts the eigenvalues continue to decrease.

From the examination of these and other cases, we

conclude that the LPF expansion is a valid technique and that

the numerical codes used to generate and solve the MEVP gave

results that agreed with those given by other methods. Also,

* the intensity and phase plots of the lower loss eigenmodes

agreed between the asymptotic and iterative approaches and

the LPF expansion. The advantage of the LPF expansion is

" that the eigenmodes and their eigenvalues can be computed

fairly quickly and with good accuracy. The asymptotic codes

are computationally faster but the higher loss modes may not

be correct. The iterative scheme is limited to predicting

the lowest loss mode only, unless more elaborate techniques

. (such as Gram-Schmidt orthogonalization) are used. Other

- matrix approaches such as the one used by Henderson and

Latham also give good results for higher order modes. The

-value of one basis set versus another is determined by the
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geometry and computer resources available. While the LPF

should give the N-term best expansion, one must still

generate the LPF basis set. This requires only a small

amount of computer time. Also, the LPF are applicable to

rectangular geometries. For cylindrical coordinates, the

appropriate basis set is the circular prolate functions.

3. Studies of eigenvalues near a mode crossing

Let us now return to the case of the mode crossing. In

order to find a iode crossing, one can hold the magnification

constant and vary the effective Fresnel number over some

range. The mode crossings are usually said to be near

integer values of effective Fresnel numbers while the maximum

mode separation (in the sense that the two lowest loss

eigenvalues are widely separated) usually is said to occur

near half-integer Fresnel numbers. (Ref 1) Often one tries

to design the resonator so that it has a half-integer Fresnel

number to avoid possible mode competition during laser

operation. However, the waveguide analysis done by Vainstein

indicated that the mode crossings occur at n + 7/8 and the

maximum mode separations occur at n + 3/8 . (Ref 9)

Numerical studies done with both the asymptotic approach and

the LPF expansion support the results from Vainstein. For n

1 , there should be a mode crossing at approximately 1.875

and such a crossing was found at 1.8742 (via the LPF

expansion). The asymptotic code predicted this crossing at

1.8675. This is in good tgreement with the LPF expansion

results considering the low Fresnel number.
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In order to establish the mode crossing precisely, a

range of effective Fresnel numbers from 1.3 to 2.4 was

examined. Figure 2.8 shows a plot of the four lowest loss
4

eigenvalues in the complex plane. The abscissa is the real

part of the eigenvalue while the ordinate is the imaginary

part of the eigenvalue. The diagram contains a large amount

of information and is fully discussed by Horwitz (Ref 19) and

Sanderson and Streifer (Ref 22). Our purpose in showing the

*diagram is to find the mode crossing but the interested

reader is referred to these excellent articles for further

insight. The mode crossing is indicated by the arrows. Note

that the eigenvalues are nearly complex conjugates. (See

Table 11-6.) Also, note that only the even parity

eigenvalues contribute to the peak near RO) - 1 In

fact, Horwitz's calculations show that for large effective

Fresnel numbers, the lowest loss mode splits off in a circle

about this value and the higher loss modes circle about the

origin. The odd modes always circle about the origin with a

radius of less than unity. This splitting off of the lowest

-loss mode from the other modes is only observed in the strip

case. Butts and Avizonis (Ref 21) found that the eigenvalues

interleave for all values of effective Fresnel number in the

* case of circular mirrors. Figure 2.9 shows a plot of the

*outcoupling versus the effective Fresnel number. The

outcoupling is defined as

(2.35)
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The outcoupling is thus related to the magnitude of the

eigenvalues and characterizes the loss of a given mode. A

line is drawn on this figure for the geometric outcoupling,

defined as S - 1 - 1/M . (These formulae apply to strip

resonators only.) In this figure, the mode crossing is

clearly evident. The point of this discussion has been to

* elaborate on how one finds a mode crossing and to illustrate

* the behavior of the eigenvalues. The results also serve as

an additional validation of the LPF expansion technique.

4. Study of the .asymptotic approach at low Fresnel numbers

We now discuss the validity of the asymptotic approach

at low effective Fresnel numbers. This discussion uses the

results discussed earlier. We found that the first few

eigenvalues and eigenmodes were in good agreement with the

iterative approach and the LPF approach as long as the

asymptotic expansion parameter, t , was greater than 4

This is rather remarkable, considering the nature of the

* asymptotic expansion. Smith also found good agreement for

the lowest loss mode using the asymptotic technique and

comparing to results obtained by Rensch and Chester. (Ref 35)

However, as Horwitz suggested, the "leveling off" phenomena

observed for the higher loss eigenvalues seems to be due to

the approximations inherent in asymptotic approach. (Ref 19,

p.1533) In particular, an approximation is made to get the

expansion in the form of a set of expansion functions.

Without this approximation, the method would not work, for it

is here that the diagonalization of the matrix eigenvalue
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* problem occurs and the reduction of the MEVP to a polynomial

*i problem results. It is also here that the increased

computational speed is obtained, but this approximation is

the one that causes the higher order modes to be incorrect.

It appears from the results obtained to date that some of the

higher order modes may even be spurious solutions and not

physical modes at all. So we conclude that the asymptotic

approach is extremely useful for finding the lower loss bare

cavity modes for effective Fresnel numbers larger than 1

and large magnifications. However, caution is advised if the

higher loss modes are needed. (For example, one would need

these modes if the bare cavity modes are used as a basis

set.) Then, more costly but more accurate matrix techniques

should be used.

* 5. Demonstration of the orthogonality of the modes.

The final area in which we apply the LPF expansion is

• the demonstration of the orthogonality of the modes of the

empty strip'resonator. The orthogonality is shown in Eq(2.8)

" and is repeated here:

This relation also served as a means of normalizing the bare

cavity modes. We examine the two cases where M - 2.5 and

F ff - 0.6 and Mn 3.0 and F,, - 1.8742 . Tables II-11

., and 11-12 show the inner products for these two cases. In
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TABLE II-11.

Demonstration of Orthogonality
M - 2.5 Feff w 0.6

n mIun(x) ur(x) dx I

0 0 1.000 *

.0 1 1.045E-07
0 2 1.004E-04
0 3 1.037E-06
.0 4 2.680E-04
0 5 2.946E-06

1 2 1.212E-07
1 3 1.989E-04
1 4 9.246E-08
1 5 3.804E-04

2 3 1.203E-06
2 4 3.972E-04
2 5 3.419E-06

3 4 9.174E-07
3 5 1.056E-03

4 5 2.608E-06

* All inner products with same index are 1.000

NOTE: Fourteen LPF were used for generating the
bare cavity modes. The grid had 523 points
between x - -1 and x - 1
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TABLE 11-12.

Demonstration of Orthogonality
M 3.0 F eff a1.8742

n m tIu (x) U,(x) dx

0 0 1.000

0 1 5.706E-06
*.0 2 1.125E-03

0o 3 2.176E-05
0 4 1.763E-03
.0 5 1.714E-05

1 2 3.580E-06
1 3 1.063E-03
1 4 2.528E-06
1 5 1.032E-04

2 3 1.365E-05
2 4 1.296E-03
2 5 1.075E-05

3 4 9.642E-06
3 5 8.344E-04

4 5 7.592E-06

*All inner products with same index are 1.000

NOTE: Thirty LPF were used for generating the
bare cavity modes. The grid had 523 points
between x -1 and x- 1
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each case, the orthogonality was clearly evident. The cases

where the integrand was the product of an even and an odd

mode should have given exactly zero but a detailed study

showed that the LPF were not precisely even or odd when they

were numerically generated. The value of this calculation is

two-fold. First, the demonstration confirms the analytic

derivation of the orthogonality of the eigenfunctions of a

* complex-symmetric kernel. Second, the demonstration further

supports the utility of the linear prolate functions as a

basis set. It w6uld be interesting to use the modes

* generated by the asymptotic approach to perform the same

calculation.

= H. Summary.

This chapter has considered the analysis of the modes of

a strip resonator that does not contain a saturable gain

medium. We have discussrd the basic geometry of the strip

resonator as well as the underlying approximations. Also, we

discussed the round trip integral equation that describes the

*modes. In particular, the fact that the kernel is complex-

symmetric is important in that the modes have a certain

* orthogonality property but the modes have not been shown to

be a complete set. Even this orthogonality property is

different from that of the hermitian kernels. After

discussing the general kernel expansion approach as well as

" highlighting several other approaches to solving the integral

equation, we discussed the linear prolate functions as an

- optimal basis set in the sense that the resulting matrix
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eigenvalue problem was of as small a dimension as possible.

The LPF were used to obtain a matrix eigenvalue problem and

this MEVP was solved numerically. In obtaining this

solution, a code was developed that rapidly generated the LPF

over the interval (-1,1). Such a code may have many other

uses. The validity of the numerical model was demonstrated

in many ways. First, internal consistency was shown. Then

* -agreement with other solution techniques was demonstrated for

many cases of effective Fresnel number and magnification. In

this process, we examined the interesting case of a mode

crossing where the two lowest loss modes have the same loss.

Here the LPF expansion model had no difficulty in predicting

the eigenvalues or the eigenfunctions. The eigenvalues of

the two lowest loss modes were nearly a complex conjugate

* pair. We also used the LPF expansion model to examine the

validity of the asymptotic approach at low Fresnel numbers.

This is the most useful application to date. We found that

the asymptotic approach gave good results for the lower loss

modes even at effective Fresnel numbers near unity. However,

the higher loss eigenvalues appeared to be incorrect owing to

*a limiting approximation in the asymptotic approach.

Finally, we used the LPF expansion to demonstrate the

orthogonality of the bare cavity modes. This calculation

serves as a final validation of the LPF expansion as well as

.4 being of general interest. The result will also prove useful

in the study of loaded cavity modes, a study that begins In

the next chapter.
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III. Modal Analysis of Loaded Resonators

A. Introduction

A realistic model of the laser resonator must properly

account for the presence of a saturable gain medium. This

analysis is made difficult because the gain depends on the

field, making the equations nonlinear. This chapter begins

with Maxwell's equations and ends with a round trip equation

that describes the modal structure of the loaded strip

resonator. In'obtaining this final equation, all relevant

assumptions and restrictions are discussed. The approach is

rigorous and the intermediate results are applicable to more

general resonators.

B. Derivation of Active Medium Propagator

Consider an isotropic, nonmagnetic medium that contains

no currents or free charges. Further, assume the fields are

time harmonic, with an exp(lit) dependence. Then Maxwell's

equations in differential form and MKS units are

-o:: x H (r-,,w) D , ,,, (3.2)

V. D i,, 0 (3.3)

H V.w ;..,) 0 (3.4)
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In order to account for the interaction between the medium

and the field, assume that

where the susceptibility is allowed to be complex:

4.. (3.6)

Suppressing the'frequency dependence for the moment and

considering Cartesian coordinates such as will be used in the

strip resonator, the wave equation for the electric field is

obtained by taking the curl of Eq(3.1) and using Eq(3.2) and

Eq(3.5):'

VXVYjE Etv~)V ~(3.7)

Now

= E.1V.E *(3.8)

V .V. + vx-g - x - ] (3.8a)

and solving for the divergence of the electric field,

V-E(7) -VX E t) (3.9)

Assuming the susceptibility varies slowly over one
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wavelength, then I '- 0 and V1EtO . (Ref 37) Thus

the wave equation becomes

4- 7AE [1.Ec 4-tX1 o (3.10)

Defining

then

+ (3.12)

The laser resonator acts to reinforce the field along

the opticil axis as discussed in Chapter 2. Thus we look for

beam-like solutions to the wave equation. We write the field

as

= M ev (3.13)

and then find a differential equation for the complex

amplitude function:

T v I

Here, 7r refers to derivatives transverse to the optical

axis (chosen as the z axis in the geometry set up in Chapter

2). Also, the term i is neglected in the paraxial

83

E,*q'
e  J

4% 4 *,*
°

.4*4



approximation. This approximation is valid when the

propagation distance is long compared to both the aperture

size (height of the mirrors) and the wavelength. This

implies that the variations in the field in the propagation

direction occur over distances that are much greater than

either the aperture size or the wavelength. For most

resonators, the approximation is valid. Nov this equation

hold for each component of the field. We are mainly

concerned with the components transverse to the optical axis

and thus assume the field is polarized in one direction,

defined as the x direction, i.e., t A Then

VT - "%A (Xy . (3.15)

This is the paraxial wave equation that describes propagation

through an active, inhomogeneous medium. If one neglects the

transverse variations in the field by neglecting the

transverse derivatives in Eq(3.15), one can define an

intensity gain coefficient as related to the imaginary part

of the susceptibility by

Ii ,YS (3.16)

The intensity gain coefficient describes how the intensity

(i.e. the square of the magnitude of the field) changes as

the field propagates through the gain medium. The

variations in the index of refraction as related to the real

part of the susceptibility by
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= '1.+ -~ R§)~~j)(3.17)

The changes in the index of refraction cause phase shifts in

the field that can be interpreted as optical path length

differences (OPD).

Now the gain is nonlinearly related to the field since

the medium equations are functions of the intensity, not the

field. Properly, one should write asz3,(. E) but this

dependence on the electric field will be suppressed in the

notation. Also note that the index of refraction is a

function of both the frequency and the electric field. the

phenomenon of anomalous dispersion arises if the frequency of

the longitudinal resonator mode does not coincide with the

line center of the laser transition. (Ref 6, page 156-8) In

most of the analysis that follows, we will assume that the

resonator modes oscillate at the center of the laser

transition. This limitation is made to focus the attention

on the saturable gain effects. The various nonlinear optics

phenomena that also arise from expanding the susceptibility

in a power series of the electric field lie outside the scope

of this effort.

We now formally treat the right hand side of Eq(3.15) as

a known function and use a Green's function to transform the

differential equation into an integral equation. Appendix 3

contains the details of this transformation for the three

dimensional case discussed here as well as the two
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dimensional case to be treated later. The resultant equation

is

U VV ,y(Y U (X.y.-) 4 %A k,yl) (3.18)

where

' Lx~y,1J = JJ A(iy0o) (3.19)

and

SZ)(3.20)

This equation can be used to propagate a scalar field through

an active, inhomogeneous medium. This analysis to thi point

closely follows Hilonni. (Ref 37) Note that the range of the

transverse variables is the infinite interval. When these

equations are applied to the resonator problem, we will find

that this range is restricted by the mirror apertures.

The term u in Eq(3.18) represents the diffraction of

the original field in the plane z = 0 . This is the

familiar Fresnel diffraction integral. However, the term ul

in Eq(3.18) represents the contribution to the final field

due to the radiation stimulated as the original field

propagates through the medium. Clearly, if the susceptibility

is zero, then the equation reduces to the Fresnel propagator

commonly used in resonator studies.

We now specialize the analysis for the strip resonator.
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Here we assume a-0 and that %X.,txv) only. (Although

these assumptions are physically difficult to realize, they

allow an understanding of how the physics works while keeping

the analysis as simple as possible.) Then the wave equation

can be written in a two-dimensional form:

M ZL -A= 0 (3.21)

Here, an appropriate Green's function is

e. T , (3.22)
G (x, zox,z' =,z-Tz

This Green's function and the propagator given below are

derived in detail in Appendix 3. As before, an integral

equation that describes the propagation of the field through

an active, inhomogeneous medium is obtained. The same

designations for the fields will be used since throughout the

rest of the analysis, we will only be concerned with two

dimensional fields. Letting the initial plane be at z - 0 ,

the two dimensional propagator is

U.X,z) - , + u1 (x.) (3.23)

where

%A AX.L) fdx' e- ". (X,O) (3.24)
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*and

U j k,-) e_ (3.25)

0 4W

This concludes the derivation of a propagator appropriate to

the strip resonator geometry.

C. Round Trip Integral Equation for Loaded Strip Resonator

We now use this propagat r to derive a round trip

integral equation for the modes of an aligned, strip

resonator with mirrors of spherical curvature. In the

paraxial approximation, the round trip is equivalent to

propagating through the lens train shown in Figure 3.1. In

this figure, the fields %Aj are calculated in a manner

analogous to the derivation of the round trip equation for

the bare cavity. This lengthy but straightforward derivation

is contained in Appendix 4. Also, we now restrict the

susceptibility to be pure imaginary. Thus, neither index

variations nor anomalous dispersion will be treated in the

ensuing analysis. Although this limits the analysis to be

applicable only to homogeneous media lasing at line center,

the analysis still gives valuable insight into how gain is

included in resonator mode calculations. Thus the

susceptibility is replaced by the term in Eq(3.16). The

final result can be expressed as the sum of three terms:

%A ('K,14 0 'g 1(x) + (3.26)
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where

'I0 J,, ' , o) (3.27)

and

| ,,, .oeI,~ ~ ~ ~ i (r 4 -MI it] x' 'L-
jj('*-CLA(',' (3. 28)

where the shorthand Le(lf) means

Z L 1 (3.29)L L - V

and finally

L -as

Let us examine the round trip equation, Eq(3.26), to see

what it means. We begin by discussing the terms T, and It

We first examine the nonlinear coupling between the gain

function and the field. Then we discuss the possible

behavior of nonlinear equations of this type. Finally, we

present two methods of solution.

Consider first the field terms in I and 'I.. The gain

function will be discussed in the next paragraph. Eq(3.28)

accounts for the generation by stimulated emission and

subsequent diffraction of fields in the first leg of the
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round trip. Eq(3.30) accounts for the same phenomena in the

second leg of the round trip. Note that the stimulated

emission is due to the total field in the resonator, not just

the original field at the feedback mirror. Now the field in

Eq(3.28) is u,(4.a) , not the original field, %A(x,O) , that is

present at the feedback mirror. This complicates the

equation since one needs to solve for tA, throughout the

resonator in order to find the final field %4 . Of

course, the equation is just reflecting the physics of how

the gain and the field interact throughout the resonator.

The same complication arises in Eq(3.30) for evaluation of

the field, % , although this field depends not only on the

-, -original field on the feedback mirror but also the fields

stimulated in the first pass. In order to actually solve

these equations either analytically or numerically, a scheme

must be developed that accurately models the distributed

interaction of the gain medium and the field. In the past

this has given rise to the use of gain sheets and we will use

a single gain sheet model in the next chapter.

As mentioned earlier, the gain function g(x,z) depends

nonlinearly on the field u(x,z) . A frequently used model

for homogeneously broadened gain is

-

where is the small signal intensity gain coefficient.

(Ref 6) Thus the two terms I and 1. are nonlinear

functions of the field since the gain is included in the
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integrand.

In summary, Eq(3.26) can be classified as a nonlinear

integral equation when we look for solutions where %4= V %A*

Frequently nonlinear equations exhibit bifurcation of

solutions. In other words, for the same parameter V , there

may be several solutions. However, we may argue against

bifurcation here on physical grounds. For a laser to operate

in steady state (as is assumed in the derivation of the round

trip integral equation for the resonator modes), gain must

equal loss. This means acceptable solutions to the loaded

cavity integral equation, Eq(3.26), must have the magnitude

of the parameter %o equal to unity. The phase of the

parameter is not restricted. The gain and the field

distributtons within the resonator must be such that they are

consistent. One actually is solving a set of coupled

equations, Eq(3.26) and Eq(3.31). The coupling between these

equations is the nonlinear aspect to the problem.

Bifurcation would imply that different field distributions

could arise from different initial gain distributions.

Physically, this is reasonable. However, as changes to the

*gain medium occur over time scales that are long compared to

the time required to establish the mode of the resonator, the

mode that is established is a unique solution for that gain

distribution and a new mode.may result as the gain medium

changes.

We now consider a perspective of Eq(3.26) that leads to

two possible solution approaches. Consider the generic
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integral equation

S~Y (.~y)OtY) ~~~)] (3.32)

This integral equation is clearly analogous to Eq(3.26) if

the kernel is taken to be the bare cavity kernel. We discuss

linear integral equations of this form in Appendix 1. They

are called inhomogeneous Fredholm integral equations of the

second kind. For all but some special cases, the linear

equations have-a unique solution which can be obtained by an

iterative approach. (See Appendix 1 or Ref 54.) To find

solutions to equations such as Eq(3.32), one can parallel the

approach used in solving linear integral equations. One can

formally assume that the functional / is known and then

find a solution for that functional. Then, using this

solution, a new functional is found and the cycle repeated

until convergence is found. This approach is merely solving

the integral equation with an iterative scheme. Essentially,

one is solving the two coupled equations

0(p (3.33)

and

/3 pLC (3.34)

This iterative solution technique is one that will be used in

the next chapter to solve the integral equation in the

* 93



approximation of a single gain sheet at the feedback mirror.

An alternative approach proves both interesting and

informative, but has been much more difficult to implement.

We consider expanding the "loaded cavity mode", od ) , in

terms of the eigenfunctions of the kernel of Eq(3.32). In

our case, these eigenfunctions are the bare cavity modes.

Without considering the question of convergence for the

moment, we use the expansion

= uA  (3.35)

where %(Y} are the bare cavity modes. Substituting the

series into Eq(3.32) and using the orthogonality relation for

the eigeifunctions of a complex-symmetric kernel, the

coefficients are given by

where t s the bare cavity eigenvalue. Alternatively,

one can solve for the coefficients in the more usual way:

This technique follows the .generalized Fourier series

methods. One would hope that the expansion coefficients

would be the same from either approach. Note that Eq(3.37)

assumes some knowledge of the solution, obtainable from the
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iterative approach described above. The calculation of the

coefficients via Eq(3.36) does not assume such prior

knowledge of the solution but does assume knowledge of the

dependence of the solution on the functional. This suggests

a different iterative scheme. Here one first guesses a

solution such as the lowest loss bare cavity mode. Then the

functional /3 is found, and the integral with the bare

cavity modes is solved, giving the expansion coefficient.

After a sufficient number of expansion coefficients have been

found, a new gdess at a solution can be made and the process

repeated. The process ssumes that the bare cavity modes are

known. A procedure for finding these modes was developed in

the previous chapter. Other techniques would also suffice.

However, this procedure is more difficult since it does

require an adequate number of bare cavity modes, with

"adequate" not clearly defined. Indeed, as discussed in

Chapter 2, the modes are not a complete set and thus the

expansion in Eq(3.35) may not be valid.

One result that is desired from an analysis of the loaded

cavity is how the bare cavity modes compete for the gain.

Either the iterative solution with subsequent projection onto

the bare cavity modes or the iterative scheme discussed above

may give this information. Either approach suggest that

there is only one field distribution for a given gain

distribution. An interesting difference between the

approaches is seen when the gain goes to zero, i.e., in the

limit when the loaded cavity equation becomes the bare cavity

equation. The iterative approach continues to be valid end
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becomes the "power method" used by Fox and Li. However. in

the "bare cavity mode expansion" method, the integrand in

Eq(3.36) goes to zero. This seems to imply that the

coefficients (and hence the loaded cavity mode) go to zero.

However, as the gain is decreases below threshold, the

parameter W is no longer constrained to have unit

magnitude and now tends toward the lowest loss eigenvalue.

(Recall that when the gain is above threshold, the

oscillation condition is such that the increase in the energy

stored in the field Is matched exactly by a decrease in the

energy stored in the gain medium. Thus the loaded cavity

eigenvalue always has unit magnitude for conditions above

threshold.) Thus the denominator in Eq(3.36) also goes to

zero. Thi limiting case would thus be the lowest loss bare

cavity mode.

D. Summary

This chapter began with Maxwell's equations and ends

with an equation that allowed a field to be propagated

through an active, inhomogeneous medium. This propagator is

applicable to problems where scalar, beam-like fields are

appropriate. The results were specialized to two dimensions.

A round trip equation was obtained for the strip resonator,

namely Eq(3.26)-E(3.30). The nature of this equation was

discussed in some detail, highlighting how the equations

showed the nonlinear coupling between the gain and the field.

Two solution techniques were discussed: an iterative scheme
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analogous to the "power method" used for bare 
cavity modes

and a bare cavity mode expansion. In the next chapter, we

develop a single gain sheet model for the 
round trip strip

resonator equation and apply these solution 
techniques to

this model.
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IV. Modelling of Loaded Resonators

A. Introduction

The goal of this chapter is to discuss how the loaded

resonator can be modelled using the results of the previous

chapter. We begin by reviewing the most relevant past work

in the analysis of loaded resonators. Then a geometric

approximation to the loaded cavity round trip equation is

developed, by means of an approximation to Eq(3.26). The

'results agree with a comparable analysis done by Hoore and

McCarthy. (Ref.38) The majority of the chapter involves the

diffractive model that was developed from the equations of

Chapter 3. Here, we model the gain as a single gain sheet

located at the feedback mirror in order to simplify the

numerical model. A parallel derivation based on the more

usual, heuristic inclusion of gain is also implemented. The

results of these two models are discussed in detail. The

chapter ends with a look at the limitations of the single

gain sheet model and a summary.

B. Review of Past Work in Loaded Resonator Modelling

In this section, we review the most relevant past work

in the modelling of loaded laser resonators. The purpose of

this review is to provide the background necessary to

evaluate the models developed later in the chapter. The

majority of the past work is based on Beer's Law. The papers

that are reviewed includes the work of Rigrod (Ref 39,40),

Fox and Li (Ref 41), Renach and Chester (Ref 35), Rensch (Ref
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42), Siegman and Sziklas (Ref 43,44), Moore and McCarthy (Ref

20,38) and Smith (Ref 36). The analyses span the range of

geometric models of Rigrod through Smith's self-consistent

model that is based on asymptotic approximations.

Before we begin the review, we need briefly to define

what is meant by a gain sheet. As we found in Chapter 3, the

proper analysis of the loaded cavity leads to integrals over

z ,the longitudinal dimension of the resonator axis, and

over x , the transverse dimension. Thus the analysis allows

for gain media with variations in both dimensions. The

distributed gain complicates the numerical analysis since the

gain depends on the fields that are propagating in both

directions in the resonator and the fields depend on the

gain. A frequently used approach is to lump the gain into a

single transverse plane, and then propagate the fields

between these planes using a free space propagator (e.g.

Fresnel diffraction integral). This plane is called a gain

sheet. Thus, the distributed gain media is treated as if it

dexists in discrete sheets. In order for this approach to be
'd

accurate, transverse field variations such as caused by

diffraction, must be negligible (Ref 35). We will make use

of this approximation in the numerical model to be developed

in section D. In this section we will address the validity

of the gain sheet models in more detail, examining how many

gain sheets are needed to model accurately a given resonator.

The Rigrod analysis has become a classical work in this

area because it provides an excellent first cut at how gain
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affects the resonator analysis. Two key results are the

establishment of the cavity threshold and the definition of

extraction efficiency. The analysis ignores all transverse

*field variations but allows for longitudinal variations in

the field. This approximation made the analysis one

dimensional. It was used by Rigrod for flat-flat resonators

and others have extended this model to unstable resonators

and additional loss mechanisms such as unsaturable losses

(Ref 45). (An unsaturable loss is any loss mechanism that is

not a function'of the field, for example, scattering.

* Absorption is an example of a saturable loss.)

The Rigrod model assumes the field is a uniform plane

wave that propagates in accordance with geometric optics.

The mirrors are simply modeled with a reflectivity and, when

the gain is assumed to have no z dependence (as in a gain

sheet), the gain is included with an exponential term:

= e (4.1)

(Rigrod also analyzed distributed gain (Ref 40).) The gain

is assumed to be homogeneously broadened, thus the gain

function is

~ 5 ~x)(4.2)

The parameters . and s t characterize the gain medium. The

analysis is done by propagating a round trip in the cavity

with these mirror and gain functions applied when
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appropriate. Then one requires the field to reproduce in

amplitude and phase in order to obtain the steady state

results. By setting the length of the gain region to be

equal to the length of the resonator, and letting the

reflectivity of one mirror be unity and that of the other

mirror be r (so that the outcoupling is by the transmission

through this second mirror), the threshold gain is found to

* be

t L (4.3)

(Note this is a power gain coefficient.) Following this

analysis further, Rigrod allows a simple calculation of the

extraction efficiency, defined as the ratio of the output

power to the maximum power extractable from gain medium in

the resonator. At steady state, gain equals loss and the

operating gain for a homogeneously broadened medium is at the

threshold level. Thus the extraction efficiency is Just

. (4.4)

where g. is the small signal gain.

All of these formulae change slightly for unstable

resonators and for systems with more elements. However. the

basic analysis put forth by Rigrod laid the foundation for

the one dimensional analysis of laser resonators. His work

also has been extended to include nonsaturable losses and

Rigrod has examined optimum output coupling and compared his
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analysis to the internal cavity power in inhomogeneously

broadened helium-neon lasers. Good agreement was found

between the theory and experiment. We will use the Rigrod

results to assess the validity of the gain model that will be

developed in this chapter.

The first attempts at including gain in a physical

optics calculation were done by Statz and Tang (Ref 46) and

Fox and Li (Ref 41). This work extended the calculation to

two dimensions by including one transverse dimension. The

work done by Statz and Tang was for a strip resonator with

plane-parallel mirrors. Since the work done by Fox and Li is

more extensive and since the approach used in both efforts is

similar, we will review the Fox and Li paper. Their model

was based on plane-plane and confocal resonators with

circular mirrors containing a uniformly pumped saturable gain

medium. The medium was assumed to be homogeneously

broadened. They assumed the laser was operating at line-

center so that anomalous dispersion would be ignored. They

approach the problem by propagating the field between the

mirrors using a Fresnel diffraction integral and applying

gain at each end of the cavity using a multiplicative term

which is the first two terms in a power series expansion of

the exponential gain shown in Eq(4.1). We will see that the

Fox-Li model is a special case of the analysis presented in

Chapter 3. The method of successive approximations was used

in the same manner as Fox and Li has used it in the analysis

of bare cavity modes. The field gains energy from the gain
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medium via stimulated emission and loses energy due to

outcoupling. After many passes, a steady state solution was

reached. Their conclusions were that "the distribution of

field amplitude over the mirror, the diffraction loss, and

the phase shift per transit are all essentially unchanged in

the presence of saturation" (Ref 41, p. 782). We will see

that the model they used is most appropriate for small gain

and thus their conclusion is not surprising.

When Fox and Li examined the confocal case, they found

that the intensity profile of the loaded cavity mode depended

on the Fresnel number of the system. They also found that

the solution was a superposition of the two lowest loss bare

cavity modes. They conclude that the "presence of the

saturable. medium has imposed additional constraints which

greatly limit the number of modes. While linear passive

resonators may have an infinite number of quasi-modes, it

appears that the nonlinear active resonator may have only one

mode (or perhaps a few modes)...[The] field resembles the

superposition of two modes of a linear passive resonator.

However, the fact that they must be simultaneously present

with the correct amplitudes suggests that it is more accurate

to consider this combination as a single mode of the system"

(Ref 41, p.783). This conclusion, that the loaded cavity

mode is different from the bare cavity modes, is based on the

numerical studies done by Fox and Li. It agrees with the

conclusions made at the end of Chapter III that were based on

a theoretical analysis.

While the Fox and Li analysis was done for the case of
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circular mirrors, the analysis of Rensch and Chester was done

for strip, confocal, unstable resonators (Ref 35). Thus

their results are most applicable to this study. (This

motivated the extensive use of their results in the bare

cavity analysis of Chapter 2.) They studied the effects of

uniform saturable gain (i.e. constant small signal gain and

saturation intensity) and mirror misalignment. We will only

discuss the work done on the loaded cavity. They used the

same iterative procedure as Fox and Li, but included the gain

by multiplying the field by an exponential factor as in

Eq(4.1). As noted in Chapter 2, they let the back mirror be

finite and approximated the distributed gain medium as a gain

sheet at this plane. Their goal was not primarily to predict

the mode shape or power extraction, but to find if a single

mode would exist in the presence of a saturable gaih medium.

In all cases that they studied, the field distribution

converged, and they concluded there was no mode competition.

The change that was observed was a general broadening and

flattening of the intensity distribution while the phase

remained fairly unchanged. Since the effect of gain on the

near field phase is negligible, little effect in the far

field pattern was observed. They concluded that the single

gain sheet approximation gave good results for magnifications

of three or less. Even at values where the bare cavity modes

showed an eigenvalue degeneracy, Rensch and Chester obtained

a single stable mode. These results were obtained at values

far above threshold. Their results are of value to this
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research in three ways. First, they used a single gain sheet

as we will do later in this chapter. Second, they observed

that the gain only tended to fill in the intensity pattern,

making it more like the geometric beam. This result does not

agree with the results we will obtain later, primarily

because Rensch and Chester include the gain as a

multiplicative term while the analysis of Chapter III

indicates that it should be included as an additive term.

Third, they did not have any convergence problems as a result

of including the gain medium. However, they studied cases

where the gain was far above threshold. We will examine the

same areas in the model developed in the next sections.

Rensch did subsequent work where he used an explicit

finite difference algorithm to solve the wave equation in the

presence of an active medium (Ref 42). This method allows

the study of distributed effects arising from an active,

flowing medium that may have index of refraction variations.

The algorithm is supposed to be more efficient and more

accurate at high Fresnel numbers. He also compared his

results to experimental results for a gas dynamic carbon

dioxide laser. His model still used a segmented gain medium

that is equivalent to gain sheets. He let the index of

refraction be complex to include the gain. Such a

formulation leads to a multiplication of the field by the

gain, unlike the addition of a gain term that we obtained in

the analysis of Chapter 3. Rensch's model used up to thirty

segments. The gain was calculated at each segment as the

field arrived and then applied to the field. He found that
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the field had converged after six or seven round trips, even

for Fresnel numbers up to 78 (equivalent Fresnel number of

9.05). His calculated output power compared well with

experimental results. His analysis is highly specific to the

gas dynamic laser and thus no quantitative comparison between

his work and our model will be made. However, his work is

important in that it permitted realistic effects such as

medium inhomogeneities and mirror distortions to be modelled.

Another analysis that examined a more realistic medium

was the analysis done by Siegman and Sziklas (Ref 43,44).

They modelled the gain medium with gain sheets placed

throughout the medium. In the first reference, the

propagation between gain sheets was accomplished by expanding

the cavity field in hermite-gaussian functions. In the

second article, a fast Fourier transform (FFT) was used to

propagate the field between the gain sheets by using a plane

wave expansion of the field. The approach was first to

propagate a field through the entire resonator, applying a

* complex gain function which was an exponential function.

However, in their model, the function allowed for index of

refraction variations as well as a nonuniform, transversely

flowing, gain medium. After making a round trip, the field

was used to update the complex gain functions at each

gainsheet. Their study was highly specialized to carbon

dioxide gas dynamic lasers, but it is an excellent reference

on the use of the FFT. They also introduced an expanding

coordinate system that permits efficient application of the
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FFT for more general geometries. The key point we note in

this work is that the gain model is an exponential function

that multiplies the field at several gain sheets.

The next analysis of loaded cavities that we discuss is

the use of the asymptotic method discussed in Chapter 2 to

model saturable gain. Moore and McCarthy laid the foundation

with their analysis of unsaturable gain (i.e. the gain is

independent of the intensity) in the laser cavity in the

geometric optics limit (Ref 38) and in the case of very high

Fresnel numbers (Ref 20). Smith extended their work to

saturable gain (where the gain does depend on the intensity).

(Ref 36) The theory of Moore and McCarthy is similar to that

of Horwitz (Ref 19). Moore and McCarthy postulate that the

output field is made up from source fields originating from

successive images of the edges of the feedback mirror in the

back mirror. The resultant field is expressed as the series

sum of plane and cylindrical waves. In their geometric

optics study of the resonator modes, they included the gain

with a first order differential equation that ignored

diffraction. This equation is equivalent to the loaded

paraxial wave equation derived in Chapter 3 with the second

order derivatives of the transverse coordinates set to zero.

Although their method is complicated, they essentially use an

exponential form that contains an integral over the gain in

the exponent. This exponential function is included in the

series sum of image sources. Smith extended the work to

include an iterative scheme whereby the field is used to

saturate the gain function, the new gain function used to
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obtain a new field and the process repeated until

convergence. The advantages of the asymptotic approach are

the application to higher Fresnel numbers and the increased

computational speed inherent in the asymptotic approach. In

Smith's study, as in the previous studies, convergence was

obtained rapidly. Smith uses the case of M - 2.5 and F -

0.64 studied by Rensch and Chester as a baseline for his

approach. He comments that "saturable gain seems to produce

an effect not unlike that of mirrors with rounded edges or

tapered reflectivity, which reduce the influence of

diffraction on mode properties" (Ref 36, p. 1619). Smith

also goes on to examine the case of mode degeneracy and shows

that the presence of gain splits the degeneracy. This result

suggests that the possibility of multimode operation in

actual lasers is lessened by the presence of a saturable

medium.

This review of the key past work in the inclusion of a

saturable gain medium in the analysis of cavity modes has

highlighted the methods used by others to model this

difficult problem. Most of the analyses used a

multiplicative factor for the gain that usually was an

exponential function similar to the function used by Rigrod.

No one observed any evidence of multimode operation as

evidenced by a failure to obtain convergence. Most of the

results indicate that the presence of gain tended to smooth

out the mode, making the intensity profile look more like the

geometric mode while leaving the phase relatively
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undisturbed. We will return to these points as we develop

models for loaded cavities based on the theory of Chapter 3.

First, we examine a geometric optics model in the next

section. Then, in the sections that follow, we develop a

numerical model based on physical optics.

C. Geometric Optics Analysis of Loaded Strip Resonators

The analysis presented in this section was primarily

developed by Erkkila (Ref 47). We begin with the final strip

resonator round trip equation that included distributed gain,

namely, Eq(3.26) and the detailed parts of that equation in

Eqs(3.27) - (3.30). The right hand side of this equation has

three parts. After specializing the equation to the case of

a confocal resonator, we apply the method of stationary phase

to each of the three parts. The confocal conditions are just

M M41 I +4- (4.5)2.- .

We make this restriction for two reasons. Many other studies

have been done using confocal resonators since these

resonators have collimated outputs. Also, the analysis is

somewhat simplified.

The method of stationary phase is an approximation that

can be applied to physical optics formulae (such as Fresnel

propagators) to obtain geometric optics results in the limit

as the wavelength goes to zero. (This technique was used by

Moore and McCarthy (Ref 20), Horwitz (Ref 19) and Smith (Ref

36).) Born and Wolf have a general discussion of this
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technique (Ref 48, p 752). We present the relevant result:

dx4 42 (X)% = e e- vx') (4.6)

where p(x) and q(x) are slowly varying functions of x .

t is a very large parameter, and the stationary point, x' ,

is the value of x at which the first derivative of p(x)

is equal to zero. This formula neglects terms of order 1/t

and higher. When this formula is applied, one must insure

that q(x) is a slowly varying function.

In the case of Eq(3.26), the field is specified at the

plane of the feedback mirror and thus it has a rapidly

varying term due to the lens factor. One can obtain a slowly

varying term by the transformation,

LA C(o = LA(x) e- (4.7)

By finding the stationary phase points for each term

separately and applying the formula of Eq(4.6), one finds the

geometric optics approximation to Eq(3.26). The details of

this derivation are contained in Appendix 8. The results are

presented here:

LA (k,ZL(48

where the first term of Eq(3.26) became

" (, so) (4.9)
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and the second term of Eq(3.26) became

L
L y S at 3s$(X, It) tAk, -L ) M L-' (4.10)

where

M -. + L - X
XS M L (4.11)

and the third term of Eq(3.26) became

ILL

3 T
L

(The "c" superscript denotes a collimated field.)

Some comments can be made about this result. 'First, we

see that in the absence of gain, the field after a round trip

is expanded and diminished in amplitude by the square root of

the magnification. (For three dimensional resonators, the

factor would be M.) The second two terms act to make up

for the decrease in amplitude by an increase from stimulated

emission. The second term shovs the weighting in the

integrand that accounts for the expanding leg of the confocal

resonator. The third term does not have this term, since

that leg is collimated.

We now examine this equation under the special case of a

single gain sheet at the feedback mirror and set x a 0 to

look only at the value on-axis. This special case will serve

as a limiting value for the diffractive model that will be
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developed in the next sections. This special case also

serves as a case that can be checked against the work of

other authors.

The single gain sheet approximation is made by setting

z - 0 in Eq(4.9) - (4.12), replacing Sdz by L (we assume

that the gain completely fills the resonator). The on-axis

case is obtained by setting x - 0 . Thus Eq(4.8) with the

detailed terms substituted in becomes

4. I (01) t 3 (,0)(4.13)

U~ (,U.' ~ +t_ ,(o .o) k3o~o)Ac r+

(At steady state, the field reproduces itself without any

amplitude loss so %A4(o,o) --u'jo,o) .) Also, for x = 0

U. DO,0) =. u:(o,o) = ( o,o) . (4.14)

Thus the gain function can be found to be

) - (4.15)

We assume here as we do throughout this work that the gain is

represented by a homogeneously broadened model:

E," (4.16)
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(All fields are normalized by i .) Then we can find the

on-axis intensity,

1U'.LOO)(B T_ - iji t -(4.17)

and by multiplying by 2a, , we find the power on the

feedback mirror:

p'M' = 14 zo, I (4.18)

The power on the mirror will be a parameter that the

diffractive model calculates, and Eq(4.18) will serve as a

limiting value for this code since as the Fresnel number

increases, the power on the mirror should approach this

value. Also, these results are in excellent agreement with

Moore and McCarthy's results in the case of distributed gain

and they are in excellent agreement with results obtained by

Rinaldi for the single gainsheet model. (Ref 49) Thus the

rigorous derivation of the loaded cavity solution in Chapter

3 is supported by past work in the area of loaded resonator

calculations by this asymptotic analysis.

This special case concludes the discussion of the

geometric optics approximation to the loaded cavity round

trip integral equation. In the next section we develop the

equations for a diffractive model of a strip resonator with a

single gain sheet at the feedback mirror.
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D. Single Gain Sheet Diffractive Model

In this section, we derive the analytic model of a strip

resonator with a single gain sheet at the feedback mirror

based on the analysis of Chapter 3. The single gain sheet

approximation is chosen because it is the simplest model to

build numerically, thus making it a logical starting

point.

We begin by rederiving the loaded cavity round trip

equation. The intent of the rederivation is to eliminate the

effects of diffraction in the gain term of the two term

propagator, while keeping the diffractive effects in the

Fresnel propagation term. This is the next step beyond the

geometric optics model discussed in the previous section. In

a more sophisticated model, diffraction would be left in all

the terms and the round trip equation, Eq(3.26), would be

used. However, we want to introduce complications in an

orderly manner, so the effects of these complications can be

observed. Furthermore, the full diffraction model is

computationally very difficult.

We also restrict the model to the case of a positive

branch, confocal, unstable resonator (PBCUR). As mentioned

in the preceding section, this case is of general interest

because of the collimated output beam, and it further

simplifies the model. A round trip in the PBCUR consists of

* an expanding leg and a collimated leg. (See Figure 4.1.)

The method of stationary phase, introduced in the last

section, will be applied to each leg. In the leg where the

field Is expanding, the curvature of the field is modified
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in order that the function, q(x) , is slowly varying, as

required by the method of stationary phase. Physically, the

use of the method of stationary .phase means that the

radiation that is stimulated on the particular leg of the

round trip is propagated geometrically through that leg.

The derivation begins with the two-term propagator for

the strip resonator, Eq(3.23) - Eq(3.25). The method of

stationary phase will be applied only to the term containing

gain. Appendix 5 gives the details of this approximation for

both the collimated and expanding legs of a PBCUR. The

-" resulting two term propagators are given below. First, we

" present the collimated leg propagator.

=X W2 $A e %',0) .

(4.19)

+ C1'jSXV %AIlIM

The expanding leg propagator is more complicated:

LA (- , j - 0

fxT , - (4.20)

We now use these propagators with the mirror factor given

earlier, '1x*

A.x) - (4.21)
" .. 0 , O, k

(
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to obtain a loaded cavity round trip integral equation

similar to Eq(3.26). The derivation parallels Appendix 4 and

will not be presented here. The resultant equation is

L A,.x) -- tL(.) N- 13 Ix) , \< z ct (4.22)

where the first term is

T x) --xe-,. LA.x' , O) (4.23)

the second term is

4 0., -- *€ - )

(4.24)

i , S, , , '.' '

and the third term is

(Y)- -- e i, L~z 3XZ)  (4.25)

IL

Now the first term is just the bare cavity integral equation

if gain were not present. The second term is the diffraction

through the second (collimated) leg of the stimulated

emission generated on the first (expanding) leg. The third

term is just the geometric optics propagation of the

stimulated emission generated on the second leg. The final

117



field is again written for a plane halfway through the

feedback mirror in order to preserve symmetry in the first

term and to make this analysis parallel the bare cavity

analysis of Chapter 2.

The integral equation, Eq(4.22), still contains

distributed gain (i.e. gain that is distributed throughout

the cavity). One difficulty with distributed gain in a

resonator is that the gain depends on the two-way fields.

The usual approximation is to segment the gain into multiple

segments and lump the gain in each segment into a single

plane, propagating between segments as if the field were in

free space. (This approach was used in several of the papers

reviewed in section B.) We want to pause for a moment in our

derivation to examine the criteria for the gainsheet

approximation and how many gainsheets age required to

adequately model a given resonator. The discussion that

follows is a summary of a paper by P.W. Milonni. (Ref 37)

(We note here that Milonni studied the accuracy of a

propagation, not a round trip in a resonator.>

Milonni begins by deriving the loaded cavity paraxial

wave equation as we did in Chapter III. He then uses the

Green's function method to obtain a propagator that has two

terms. The first is the usual Fresnel diffraction integral.

The second contains the contribution due to the stimulated

fields. Milonni then expands the gain term in a Taylor

series about the observation point. He finds two conditions

that, when satisfied, allow for accurate modeling using gain

sheets. These two conditions are
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(XE) -< l.E (4.26)

and

i 'kt,,' X ,,' LK.j 0),O F x. ,O) (4.27)

The first of the conditions, Eq(4.26), essentially states

that the transverse variations of the field must change

little over the propagation distance. This can be expressed

as a Fresnel number argument for the strip case:

> . o.o076 (4.28)
4w

This expression gives conditions so that the effects of

diffraction are negligible over the gain segment. The second

condition, Eq(4.27), restricts the amount of variation in the

susceptibility (or the gain). That is, the gain must be

fairly uniform across the gain segment that tHe gain sheet is

modelling. The number of gain sheets required to model

accurately a given propagation through an active medium is

set by these two restrictions.

The results obtained by Kilonni parallel the results

obtained by others. Fox and Li used gain sheets if (1) the

gain per pass was small ( g. L << 1 ) and (2) the transverse

field distribution does not change substantially along the

axial direction (Ref 41). Siegman and Sziklas state that the
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gain sheet model is valid if "neither the accumulated

differential phase shift nor the fractional gain in a single

segment" is large (Ref 43,44). Rensch states the same

restriction that Siegman and Sziklas used and added that the

segment size z (where the number of segments is

approximated by L/z ) should be less than the transverse

field variations (Ref 42). Clearly, these authors are all

stating the same general rules for the use of gain sheets.

With this brief discussion of the gain sheet

approximation, we would like to next turn to the numerical

model that was developed to implement Eq (4.22). However,

before we discuss this model, we want to derive a parallel

model based on a more conventional inclusion of gain. This

model, termed the "multiplicative model" for convenience,

assumes a single gainsheet at the feedback mirror and

implements this gain as a multiplicative factor:

LA. tAk = P- ,,X) .(4.29)

This gain term is essentially a Beer's Law gain model. Using

the same lens factors and the Fresnel propagator as used in

Appendix 4, one can readily find a round trip equation for

the loaded cavity mode. The resulting integral equation has

a radically different form from Eq(4.22):

L .4 e (4.30)

Here, the equation is a homogeneous integral equation,
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although the kernel is nonlinearly related to the field

through the gain term. Note also that the gain term depends

on both coordinates, x and x'- . We show this equation

and later implement a numerical model of it to compare with

the model of Eq(4.22). We now turn our attention to the

development of the numerical models.

E. Numerical Implementation of Loaded Cavity Models

In this section, we describe how the analytic model

developed earlier in this chapter is implemented in a

computer model. In the next section, we will discuss the

• ;results obtained with the model. The numerical model solves

the loaded cavity round trip equation using the iterative

*technique. The equation that will be solved is Eq(4.22) with

the detailed parts in Eqs(4.23)-(4.25). In Eq(4.22), we

replace u. with V u. , in order to form the mode

equation. A similar model is developed for Eq(4.30) in order

to observe the differences between the two approaches.

As mentioned earlier, only a single gainsheet will be

used in the numerical model. We choose to place this

gainsheet at the feedback mirror. This is accomplished by

replacing 6i by L , setting z to zero in Eq(4.24)

and z to 2L in Eq(4.25). However, Eq(4.24) and Eq(4.25)

contain the fields u, and u . These fields can be

related to the field u at the feedback mirror plane by the

following relations:
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Now the gain function is modelled with a simple homogeneously

broadened gain model:

= ,(4.33)
1. + I (x)lk + |481Q )IL

When Eq(4.31) and Eq(4.32) are used, this gain model will be

saturated by two fields for values of x on the mirror, and

only by one field off the mirror.

Using the relations in Eqs(4.31)-(4.33), a numerical

model was constructed to solve the integral equation using an

iterative technique. First, a trial solution for uo was

constructed. Then the right-hand side of Eq(4.22) was

solved, generating a new trial solution for u o . By

comparing the last trial solution to the current one, the

loaded cavity eigenvalue, v, can be estimated, This process

is repeated until the eigenvalue estimate does not change

significantly (less than one percent) between iterations. (A

similar model was developed by Fox and Li (Ref 15) and a bare

cavity numerical model was developed in Chapter 2 to serve as

a baseline for the kernel expansion.) In the bare cavity

case, only the lowest loss mode was found. In the loaded

cavity case, the form of the equations suggest that there may

only be one solution, although a proof of this is not offered

due to the nonlinear form of the second and third term on the
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right-hand side of Eq(4.22).)

Several comments can be made about the loaded cavity

eigenvalue. First, when the gain is set above the cavity

threshold, we expect to find steady state operation, i.e. the

equations should show that the gain in the field due to

stimulated emission equals the loss in the field due to

outcoupling. Then the magnitude of the eigenvalue should be

unity. Second, the phase of the elgenvalue will still

indicate a frequency offset just as the phase of the bare

cavity eigenvalues did. Thus if the model is working

correctly, we should find this behavior predicted by the

code.

The functions were evaluated on a uniform grid. An odd

number of points was used in order to use Simpson's rule

integration. Due to the integral over x in Eq(4.24), the

grid needs to extend at least out to the geometric shadow

boundary defined by x = Ha, . Taking the grid over a

smaller region gives incorrect answers for the mode on the

mirror.

The output of the model includes the loaded cavity

eigenvalue discussed above, intensity and phase plots of the

mode, and three power calculations. The first is an estimate

of the power based on a Rigrod calculation. The equation

used is Eq(4.18), repeated here:

2, [ t 0.] (4.34)
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Also, the power on the mirror and the total power across the

outcoupling plane (as limited by the extent of the transverse

grid, xmax ) are calculated, and the values listed. These

values are used to calculate an outcoupling fraction, defined

by

e : s: - .(4.35)

. This value is also listed. These outputs allow one to study

the eigenvalue behavior, the changes in intensity and phase

and the power on the mirror as the gain is increased. Also

the outcoupling should increase as the gain is increased, but

some saturation effects should also be apparent, as

illustrated by the fractional outcoupling.

The model was written using FORTRAN IV. It was first

implemented on the Aeronautical Systems Division (ASD)

Control Data Corporation Cyber series computer, and then

transferred to the Air Force Weapons Laboratory (AFWL) CRAY-i

supercomputer. The results that are shown in this chapter

were obtained with the CRAY.

The initial baseline for the code was to compare it

against a bare cavity calculation obtained from any el the

methods discussed in Chapter 2. The code predicted identical

eigenvalues, intensity and phase plots for all cases

examined. The verification of the loaded cavity calculations

is more difficult since no past work included a saturable

medium in the same manner. This is one reason that the

multiplicative model of the loaded cavity was derived at the
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end of the last section. Eq(4.30) was also solved in an

iterative manner that paralleled the procedure used to solve

Eq(4.22). The same gain model was used to allow direct

comparison of the results. The outputs that will be compared

*include the saturation characteristics, the eigenvalue

behavior, the intensity and phase of the mode, and the

behavior of the power on the mirror. The iterative model

based on the analysis of Chapter 3 was also checked for

internal consistency, i.e., did it predict behavior that

agreed with qualitatively observed laser behavior? Also, a

wide range of cases were studied in an attempt to see if the

bifurcation of solutions could be observed. (No such

behavior was observed. Near the mode crossing points

predicted by the bare cavity theory, both models showed

difficulty in converging as indicated by the number of

iterations needed to obtain a converged solution, but the

multiplicative model behaved much worse than the model

developed here and actually did not converge even after many

iterations for some cases.)

F. Results of the Numerical Model of the Loaded Cavity

In this section, we examine the major results obtained

from the numerical model of the strip resonator. Recall that

the numerical model uses the analysis of Chapter III with the

method of stationary phase applied to the integral that

contains the gain. Then the gain is further approximated by

a single gain sheet at the feedback mirror. This numerical
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model will be used in this section to analyze the modes of

the loaded cavity. Since the gain is being included in an

additive manner rather than a multiplicative fashion, there

are limited published results against which the model can be

compared.

The results that will be discussed include (1)

restrictions on transverse grid size. (2) convergence test of

the model by varying the number of points in the grid, (3)

convergence test by examining the number of iterations needed

* for a converged mode, (4) examination of the power on the

feedback mirror, amplitude of the loaded cavity eigenvalue

and phase of the loaded cavity eigenvalue as a function of

the small signal gain, (5) examination of intensity/phase

as a function of small signal gain for the additive and

multiplicative models, (6) examination of a mode crossing

* where the amplitude of two lowest loss bare cavity

eigenvalues are equal, (7) examination of the phase of the

loaded cavity eigenvalue and the power on the mirror as a

function of the equivalent Fresnel number, and (8) a

preliminary examination of how the loaded cavity mode maps

onto the bare cavity modes. These results comprise a broad

range of phenomena that will illustrate the similarities and

differences between the additive model developed in Chapter

III and the multiplicative model frequently encountered in

the literature.

1. Transverse Grid Extent

The approach to solving the loaded cavity integral
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equation, Eqs (4.22)-(4.25), viii be an iterative technique

as described above. Of concern here is the extent of the

transverse grid necessary to yield an accurate answer. The x

integral in Eq(4.24) is the most restrictive term in the grid

determination. This integral is over the back mirror and the

grid must extend over at least the width of this mirror.

Picking the upper limit on the grid to be greater than or

equal to Ma gave intensity and phase plots that were in

good agreement while picking the upper limit to be less than

Ma gave mode plots that varied radically as the upper limit

changed. The conclusion is to always set the grid limits to

be at least as large as the back mirror size. Here the back

mirror size is set by the geometric beam size.

2. Convergence as a Function of Number of Points

We now vary the number of points and look for changes in

the loaded cavity mode solution. The purpose.of this test is

to verify the numerical stability of the results. Table IV-

4 summarizes the effect of varying the number of points by

examining the effect on the loaded cavity eigenvalue. The

d gain is set to be initially three times the geometric

threshold value. Note that the amplitude of the eigenvalue

is unity even for a small number of points (N-25). However,

the phase of the eigenvalue changes as the number of points
o;

tchanges until at least 99 points have been used. Plots of

the intensity and phase of the converged solution for the

loaded cavity mode show similar results. As long as at least
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TABLE IV-1.

Convergence History As Number of Points is Varied
H - 10 Feff w 0.225 go W 3.0 gth  Xmax = 3.0 a1

egenvalue eigenvalue
N magnitude phase power on mirror

25 0.9999 0.257 0.014225

49 1.0003 0.024 0.01345

75 1.0001 0.037 0.0117

99 1.0001 0.043 0.01166

125 1.0001 0.044 0.011645

149 1.0001 0.045 0.011638

175 1.0001 0.046 0.0.1165

199 1.0001 0.046 0.01165

NOTE: 1. Data shown is for the fifteenth iteration.
2. Power on mirror is in normalized units.

128



i..

99 points are used for this particular case, a converged

solution is obtained that accurately represents the loaded

cavity mode as modeled by this approach.

This study was not intended to set definitive require-

ments on the number of points required for a particular case

(as specified by the magnification and equivalent Fresnel

number of the resonator). Rather, each case should be

considered separately by varying the number of points until

the converged solution no longer varies. (Sziklas and

Siegman developed a criterion for the number of points

required to resolve the mode in their FFT model (Ref

44:1878). However, their work involved guardbands for the

FFT. If we set a guardband of about 0.5 and allow only 0.001

of the energy to be aliased from higher spatial frequencies

into lower ones, then their criterion (Eq(19) of Ref 44)

gives a required number of points similar to that obtained

here.) This study did show that the same loaded cavity mode

was obtained as the number of points was increased beyond

some minimum. This study is necessary as an internal

verification of the numerical model.

3. Convergence as Function of Number of Iterations

We now examine another internal check on the numerical

model. The loaded cavity mode is obtained after a number of

iterations and we examine here the number of iterations

required to produce a converged solution. The final solution

V did not depend on the initial field.

• 'Figures 4.2 and 4.3 show the magnitude and phase,
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Figure 4.2 Convergence History -Magnitude of Eigenvalue.
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Figure 4.3 Convergence History -Phase of Eigenvalue.
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respectively, of the loaded cavity eigenvalue. This

eigenvalue is the parameter that is used in the model to

assess convergence. The figures. show two cases of equivalent

Fresnel number, 0.74 and 1.3 ,.for the same magnification

and small signal gain. The first case is near a mode

crossing where the two lowest loss bare cavity eigenvalues

have nearly the same eigenvalue. This case usually exhibits

difficulty in convergence when the method of successive

approximation is used (Ref 15). (We will examine a mode

crossing in more detail in Section 6.) The second case is a

case where the two lowest loss bare cavity eigenvalues are

widely separated. The figures show that convergence was

obtained rapidly in both cases. For the particular cases

studied, convergence was obtained in about ten iterations.

Similar results were obtained for all the other cases studied

with this model.

This study showed that the numerical model was stable

and that convergence was obtained for a reasonable number of

iterations. This study also showed that the lbaded cavity

eigenvalue was a useful parameter for assessing convergence.

The number of iterations required for convergence increases

as the equivalent Fresnel number. In the cases that were

studied, the convergence was checked manually. When the

eigenvalue did not change by more than about one percent for

several iterations, convergence was said to have been

obtained. When this criterion was satisfied, the intensity

and phase did not vary with more iterations.

132

% o .. -' ., i .'. .... , . -..- . . . .-. ., .. . . . .



4. Variations in Loaded Cavity Mode Parameters as Function
of Small Signal Gain

In this section, we apply the model to study the trends

in the loaded cavity mode as the small signal gain is varied.

The parameters that are studied are the amplitude and phase

of the loaded cavity eigenvalue and the power on the feedback

mirror.

The case presented here is the same one that will be

presented for the majority of this chapter: K - 2.5 and F,

- 1.2 . Other cases were studied and this case was chosen

as representative. The equivalent Fresnel number is low

enough that convergence is rapidly obtained. Therefore many

computer runs can be made to explore the parameter space.

We examine first the amplitude of the loaded cavity

eigenvalue as a function of small signal gain. Figure 4.3

shows the behavior. In this figure, the results from both

the additive model (denoted by the "x's") and the

multiplicative model (denoted by the dots) are displayed.

The two models give very similar results for this parameter.

Two principal conclusions are apparent from these plots.

First, the threshold predicted by the two models is below the

geometric threshold. (The abscissa is scaled by the

geometric threshold.) This behavior is physically meaningful

because diffraction tends to peak the intensity towards the

center of the resonator for equivalent Fresnel numbers near

n + 0.375 ( n any integer), thus allowing the gain to be

more rapidly saturated in the central "core" region of the

resonator. Second, both models predict that the loaded
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cavity eigenvalue has a magnitude of unity for small signal

gains above threshold. The numerical models did not contain

any algorithm that forced this result. Rather, the gain from

the stimulated radiation acted to balance the losses due to

diffraction. The behavior of the numerical models thus shows

the "gain equal loss" behavior expected from laser theory for

the above threshold case. A final conclusion is that the

magnitude of the loaded cavity eigenvalue is not a good

discriminator between the two models.

A better discriminator is the phase of the loaded cavity

eigenvalue. Figure 4.5 shows this parameter as a function of

the small signal gain, again scaled by the threshold gain

value. The top plot shows the results of the multiplicative

model while the bottom plot shows the behavior for Xhe

additive model. For gains below threshold, the phase doesn't

depart significantly from the phase of the bare cavity

eigenvalue for the multiplicative model but it-does change

for the additive model. This is more significant when we

recall that the phase of the eigenvalue is associated with

the frequency of the mode that exists in the resonator (Ref

6:179). Thus the additive model predicts the frequency of

the loaded cavity mode shifts as the small signal gain is

increased toward threshold. This result is more physically

realistic than the lack of a frequency shift predicted by the

multiplicative model as the presence of the gain medium

begins to affect the mode. Both models predict that the

frequency shifts as the gain is increased above threshold.
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The amount of frequency shift eventually becomes constant for

gains far above threshold. Different oscillation frequencies

are predicted by the two models. The direction of the

frequency shifts varied for the different Fresnel numbers

studied. In a subsequent section we will examine the

variation of the eigenvalue phase as a function of the

equivalent Fresnel number. Here we only note that the two

models yield different behavior for the frequency of the

loaded cavity mode but both show the frequency shift becomes

fixed for gains far above threshold.

The last result that is discussed in this section is the

variation of the power on the feedback mirror as a function

of the small signal gain. Figure 4.6 shows this variation as

predicted by both models. Also shown on this plot is the

geometrical optics prediction derived earlier in the chapter.

The line labeled P*, is obtained from Eq(4.18). The first

point to be made about these plots is that there is

essentially no power on the feedback mirror until the gain is

increased above threshold. Both models predict about the

same threshold. Note that Eq(4.18) also gives a threshold

that is slightly below the geometric threshold developed by

Rigrod:

. (4.36)

The results of the multiplicative model deviates farther from

the geometrical optics prediction than those of the additive

model in this case and all the other cases studied. While
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this doesn't prove that the additive model is more correct

than the other model, it does suggest that the additive model

is in closer agreement with the .eometrical optics prediction

than the multiplicative model. A-final statement about

Figure 4.6 is that the power on the feedback mirror increases

linearly with increasing gain. Figure 4.7 shows the

outcoupled fraction of the power as a function of small

signal gain. (See Eq(4.35)) Again, a threshold behavior is

exhibited by both models. In this case, the only reference

that can be used is the geometric outcoupling fraction shown

by the horizontal dashed line. (Whether the curves predicted

by the diffractive models will lie above or below the

geometric outcoupling fraction depends on the Fresnel number.

The behavior will be discussed in Section 7.) Here, the

outcoupling shows saturation as the gain is increased. This

saturation occurs as the gain in the region off the feedback

mirror is saturated. The gain on the feedback mirror

saturates faster than the gain off the mirror since the gain

on the mirror is saturated by two way flux. The results in

Figure 4.7 agree well with the basic understanding of laser

physics, i.e. both models predict the correct trends.

5. Intensity/Phase Plots for Small Signal Gain Variations

In this section we will examine the variations in the

intensity and phase of the loaded cavity mode as the small

signal gain is increased from zero to far above threshold.

Both the additive and multiplicative models are used to
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generate these plots so that a further comparison can be made

between the two models. Again, the case that is presented is

the case of a positive branch confocal resonator with a

magnification of 2.5 and equivalent Fresnel number of 1.2

All of the plots represent numerical calculations that

converged in the sense that the loaded cavity eigenvalues did

*, not vary for several iterations by more than one percent. An

adequate number of points was taken on a grid that extended

*at least from -Ma, to Ma t , based on the discussions of

convergence given above.

Figures 4.8 to 4.13 show the intensity of the loaded

cavity mode in the plane just before the feedback mirror.

The gain varied from zero (Figure 4.8) to five times the

geometric threshold (Figure 4.13). The intensity is

normalized such that the peak value is set to unityt The

abscissa is scaled by the halfwidth of the feedback mirror so

that -1 and +1 represent the edges of the mirror. In

these figures, the plots labeled with A represent the

results of the additive model and the plots labeled with H

represent the results of the multiplicative model. We will

now discuss each intensity profile separately.

Figure 4.8 is the intensity of the lowest loss bare

cavity mode. This plot agrees well with the results of

Chapter II where the matrix approach was used to obtain the

bare cavity modes. This profile is shown as the baseline

against which the other intensity profiles can be compared.

Figure 4.9 is the intensity profile for the case where

the small signal gain is 0.4 times the geometric threshold.
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Here the results of the two models are already showing slight

differences, although the plots are in good agreement. The

additive model shows the mode filling in faster on the mirror

as well as increasing more rapidly off the mirror. The

general profile has not changed significantly from the bare

cavity mode. The peaks and valleys have not shifted in

location, and the profile is still dominated by a central

peak.

The next figure, Figure 4.10, has the small signal gain

- set at 0.8 times the geometric threshold. Again the additive

*model shows significantly more filling in of the mode on the

feedback mirror. What had been a mild shoulder at the edge

of the mirror has become another peak. This is the only

significant change in the general profile. In fact, when the

results of the multiplicative model for this gain level are

overlaid on the bare cavity mode, only a slight increase in

the intensity is noticed. Recall that the phase of the

eigenvalue, Figure 4.5, and the outcoupling, Figure 4.7, did

not change significantly from the bare cavity value for the

multiplicative model. This correlates well with the

intensity profile.

Figure 4.11 is the intensity of the loaded cavity mode

when the small signal gain is equal to the geometric

threshold. The trends discussed above continue, with the new

peak at the edges of the feedback mirror becoming more

pronounced for the additive model. The intensity predicted

by the multiplicative model differs from the bare cavity plot
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only in that the intensity is increased across the mode.

Neither the location of the peaks and valleys nor the

relative heights of the peaks have changed.

When the small signal gain is set to twice the geometric

threshold, a sharp jump at the edge of the feedback mirror is

apparent in both plots. (See Figure 4.12) This is due to the

gain model, which sharply changes the saturation of the gain

from two way flux to one way flux. The intensity profile

predicted by the additive model shows the intensity on the

feedback mirror has continued to fill in. One expects the

mode to fill in on the feedback mirror since the gain is less

strongly saturated where the intensity is lower and thus the

field should increase more rapidly here. This behavior is

shown in the region off the mirror, where the gain is only

saturated by one way flux. The intensity on the feedback

mirror that is predicted by the multiplicative model still

resembles the bare cavity mode. Some filling in of the

intensity is apparent when this plot is compared to the bare

cavity mode.

The last intensity profile, Figure 4.13, shows the

results when the small signal gain is five times the

geometric threshold. (This case is more representative of an

actual laser system. Only by having the small signal gain

significantly higher than the geometric threshold of the

resonator can significant amounts of power be extracted from

the medium.) Here the additive model shows the central peak

to be lower than peaks located off the mirror while the

multiplicative model still shows the central peak to
1
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dominate. The new peaks near the edges of the feedback

mirror that were predicted by the additive model were never

predicted by the multiplicative model. These peaks are a

result of the more complicated additive term that includes

the diffraction of the radiation stimulated on the first pass

as this radiation propagates out of the resonator. If more

gain sheets had been used or if the full diffraction terms

given in Chapter III were used, these peaks may have been

different. But the significant point is that the profile

differs from the bare cavity mode. The multiplicative model

does not show these changes. As the gain is increased

further in both models, the mode on the mirror does not

change much since the gain is now nearly saturated. For very

high gains, even the gain off the mirror exhibits saturation

in that the intensity profile does not increase significantly

as the gain is increased.

The phase of the loaded cavity mode does not change

appreciably as the gain is increased from zero. Figure 4.14

shows the phase predicted by both models for small signal

gain set at five times the threshold value. The bare cavity

phase is also shown for reference purposes. Since the phase

does not change significantly, we expect the far field beam

quality will be unchanged from the beam quality of the lowest

loss bare cavity mode. This is important since the lowest

0 loss bare cavity mode calculations can be used for beam

quality calculations. This conclusion is limited to the

simplified model of simple saturable gain. More realistic
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kinetics might introduce asymmetries and phase shifts that

would change the beam quality of the loaded cavity mode as

compared to the bare cavity mode.

The final figure of this stction, Figure 4.15, shows the

gain profile from the additive model for the case where the

small signal gain is set at five times the geometric

threshold. The first observation is that the actual

threshold is lower than the geometrically estimated value.

*: Even using the geometrical optics analysis of Section C, the

threshold is given by

1 -4 (4.37)

For this case (M2.5), Eq(4.37) gives a threshold of 0.306

instead of the geometric threshold of 0.312 predicted by

Eq(4.36). Examining Figure 4.15, we find that the

diffractive model still gives a lower threshold of about

0.22. This lower threshold was also shown in earlier plots

of the amplitude and phase of the loaded cavity eigenvalue.

Figure 4.15 also shows the distinct Jumps at the edges of the

mirror that are an artifact of the single gain sheet model

used in the models. This gain profile is typical of the

profiles obtained with either model for various gains.

Because of the single gain sheet model, the gain profile

tends to look like an inverted plot of the intensity profile.

This appearance can be understood by realizing that the gain

begins at the small signal gain level and then the intensity

decreases this gain by an amount that is proportional to the
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intensity. Thus where there is higher intensity, there will

be lower gain. (Note also that the function 1/(1+x) can be

approximated to first order by 1-x . This can be applied

to the simple saturable gain model, Eq(4.2).)

This discussion of the intensity and phase profiles of

the loaded cavity mode as the small signal gain is increased

has four main points that are briefly restated here. First,

the multiplicative model tends to underestimate the power

output of the resonator as compared to the additive model.

This may be due to the behavior of the exponential function

for the field off the feedback mirror. Second, the additive

model shows that the profile may change from the bare cavity

mode due to the diffraction of the stimulated radiation and

its coherent addition with the stimulating field in the

resonator. This combination might introduce new structure in

the mode. Third, the phase of the loaded cavity mode does'

not significantly differ from the bare cavity mode,

indicating that the beam quality from the two-modes should be

about the same. Finally, the threshold predicted by the

diffractive models is less than the threshold predicted by

the one dimensional models. This is probably due to the

peaking of the intensity near the axis. There are some

Fresnel numbers where a minimum occurs on axis and these

cases might show different threshold behavior. We now

consider a case of a different Fresnel number, namely the

case of a mode crossing.
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6. Loaded Cavity Mode Near a Mode Crossing

A mode crossing occurs for a magnification of 3 and

equivalent Fresnel number of 1.8742 . This case was studied

in Chapter II in depth and the matrix technique showed the

two lowest loss even modes had the same loss as measured by

the magnitude of the eigenvalue. The iterative approach

could not be applied to the bare cavity mode crossing case

since convergence is extremely slow. In this section, this

case is examined with the loaded cavity models to see if

convergence can be obtained and what the mode characteristics

would be.

Figures 4.16 and 4.17 show the convergence history as

measured by the magnitude of the loaded cavity eigenvalue.

The first figure is for the case where the small signal gain

is equal to the geometric threshold. The multiplicative

model did not converge in the twenty iterations shown while

the additive model showed good convergence in about fourteen

iterations. However, the magnitude of the loaded cavity

eigenvalue was less than one, showing that threshold had not

been reached. The important point is that the additive model

did converge and the multiplicative model did not. This

supports the supposition at the end of Chapter III that the

additive model may have a unique solution since it is an

inhomogenous integral equation while the multiplicative model

may not have a unique solution since it is a homogeneous

integral equation. In fact, a linear homogeneous Fredholm

integral equation of the, second kind usually has a spectrum

of eigenfunctions as was seen in the bare cavity analysis of
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Chapter II.

In Figure 4.17, the gain has been increased to three

times the threshold value. Here, both models did converge to

an answer where the loaded cavity eigenvalue had a magnitude

of one. However, the additive model gave more rapid

convergence, converging in about ten iterations versus

thirteen for the other model. Also, the magnitude of the

variations was more pronounced for the multiplicative model.

The fact that this latter model did converge for this case

indicates that the gain now dominates the kernel of the

integral equation and the degeneracy observed for the bare

cavity mode is no longer apparent for this case. At some

point where the gain is far above threshold, the gain becomes

the dominant term in both models and the bare cavity terms

are the perturbations.

We next examine the power on the mirror as the small

signal gain is increased from zero to above threshold.

Figure 4.18 shows the behavior. As discussed earlier, the

additive model gives results that agree more closely with the

geometrical optics prediction given by Eq(4.18) and plotted

as the uppermost line. Note also that because of convergence

problems, the multiplicative model was only used to

calculations well above threshold. The resonator designer

intentionally tries to avoid mode crossings in the design of

high energy laser resonator in order to obtain good "mode

control" and so the utility of either model at a mode

crossing is of more academic than practical interest. The
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results indicate that the additive model is a more stable

model of the loaded cavity.

7. Trends in Loaded Cavity Eigenvalues and Power on Mirror

With Variations in Fresnel Number

In this section we return to examining the phase of the

loaded cavity eigenvalue and the power on the feedback mirror

as the equivalent Fresnel number is varied. In the bare

cavity case, we observed a periodic fluctuation in the

magnitude of the eigenvalue with variations in the equivalent

Fresnel number. (See Figure 2.9) The fluctuations had

maxima at equivalent Fresnel numbers of about n+0.375 and

minima (mode crossings) at equivalent Fresnel numbers of

about n+0.875 where n is any positive integer. In the

loaded cavity case, the magnitude of the eigenvalue is fixed

at unity for gains at or above threshold. However, we will

observe a similar fluctuation in other parameters.

The first parameter we examine is the power on the

feedback mirror after convergence is obtained. Figure 4.19

shows the results obtained with the additive model. Here the

small signal gain is set at three times the geometric

threshold value. The oscillations are evident and the

location of the maxima and minima are about the same as those

observed in the bare cavity case. However, the amplitude of
|J

the oscillations appears to damp out with increasing Fresnel

number. In fact, the results appear to be damping out to a

value that is in good agreement with the geometrical optics
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prediction given by Eq(4.18). A limited number of

calculations were made at higher equivalent Fresnel numbers

and the agreement with the geometrical optics prediction was

even better. As a function of Fresnel number, the

diffractive model rapidly approaches the geometrical optics

limit. One other series of calculations was made with the

small signal gain set at the threshold gain and similar

behavior was observed. The expense involved with such

calculations has prohibited a more in-depth study. The main

observation is that the location of the maxima/minima are the

same as those observed for the bare cavity case. The power

on the mirror is similar to the magnitude of the eigenvalue

as a measurement of the amount of feedback in the resonator.

In fact, some large resonator codes such as the System

Optical Quality (SOQ) code used at the Air Force Weapons

Laboratory use power calculations for convergence criteria'

instead of field points, as in this model.

The second parameter we examine is the phase of the

loaded cavity eigenvalue. Figure 4.20 shows the results

obtained from the same series of calculations that produced

the power on the mirror results discussed above. Again the

oscillatory behavior is evident but here the locations of the

maxima and minima do not correspond to the previous results.

The maxima occur at about integer equivalent Fresnel numbers

and the minima occur at equivalent Fresnel numbers of about

n+.7, where n represents a positive integer. However, a

close examination of the results shows that near the values

n+.375 and n+.875 the phase of the eigenvalue passes
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through zero. In these cases the eigenvalue is purely a real

number. One other observation is that the oscillations damp

out with increasing Fresnel number over the limited range

studied here. The limiting value would appear to be zero for

the phase. This is in good agreement with the geometrical

optics predictions, since there is zero phase in the

geometrical optics model. Thus the frequency shift would be

zero, but this shift is applied to the infinite frequency (or

zero wavelength) case. As was stated earlier, the primary

conclusion to be drawn from these results is that the

oscillatory behavior observed in the bare cavity eigenvalue

as a function of Fresnel number can also be seen in the

loaded cavity. The practical application of this result is

that the conventional resonator design criteria of choosing

the physical parameters to avoid a mode crossing is still a

good design criteria for the loaded cavity. Maximizing the

power on the feedback mirror would give the best gain

saturation in the "core" of the resonator and thus the most

efficient energy extraction from the gain medfum.

8. Mapping the Loaded Cavity Mode onto the Bare Cavity Modes

At the end of Chapter III, the expansion of the loaded

cavity modes in terms of the bare cavity modes was discussed.

The intent of this expansion is to observe how well the bare

cavity modes model the loaded cavity as well as to find out

how the bare cavity modes combine to make the loaded cavity

mode. In this section, some preliminary results are
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presented showing how the loaded cavity mode calculated with

the additive model can be projected onto the bare cavity

odes. The results are very interesting, but the limitations

on the resolution of the higher order bare cavity modes as

well as some numerical code difficulties restrict the amount

of data to be presented and limit the conclusions that can be

drawn from the results.

The methodology of obtaining the expansion coefficients

is described here. The additive model is used to obtain the

loaded cavity mode through the iterative method. Then this

mode is projected onto the bare cavity modes (BCH) as

described at the end of Chapter III. The bare cavity modes

are obtained with the kernel expansion method described in

Chapter II using the linear prolate functions as a basis set.

Any method of generating the bare cavity modes would be

useable for this expansion. The results are expansion

coefficients that can be used to reconstruct an estimate of

the loaded cavity mode using the bare cavity modes. The

numerical model for this projection was complicated by the

fact that (1) the bare cavity modes exist only on the

feedback mirror while the additive model must use a grid that

extends out to the shadow boundary, and (2) the bare cavity

modes were calculated on a nonuniform grid due to the

requirements for generating the linear prolate functions and

the additive model uses a uniform grid. The first difficulty

was resolved by integrating only over the feedback mirror as

the integral in Eq(3.37) required. The second difficulty was

more challenging. The BCH were interpolated onto the uniform
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grid of the additive model and a numerical quadrature routine

(trapezoidal rule) was employed in the integration. The bare

cavity modes were normalized by the orthogonality

relationship after they were interpolated. Then these

functions were used as a basis set and the expansion

coefficients were calculated.

The first case that is examined here is the case that

was discussed extensively in Chapter II. The magnification

is 2.5 and the equivalent Fresnel number is 0.6. Table IV-2

shows the expansion coefficients for the BCM that were used

in the approximation of the loaded cavity mode. Note that

the lowest loss mode has the largest coefficient by a factor

of 30. Also, the odd parity BCM have very small

coefficients. However, the higher order even modes do not

show a large difference in their coefficients. No clear cut-

off that would indicate how many BCM are required is evident,

although the lowest loss BCM is always the most significant

function in the expansion. When these coefficients are used

in a finite series to see how closely this series reproduces

the loaded cavity mode (LCM), we find that the approximate

LCK varies greatly. Figure 4.21 shows the reconstructions.

The LCM is plotted against the normalized intensity scale on

the ordinate. The approximate LCK intensities were

intentionally shifted down to allow them to be displayed on

the same plot. Thus one should mainly consider the shape of

the approximate LCM and how they compare to the LCM produced

by the additive model. The curve marked "1 BCM" uses only

the lowest loss BCH; the curve marked "2 BCM" uses the two
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TABLE IV-2.

Bare Cavity Mode Expansion Coefficients
N-2.5 Fef 0.600 g9 3.0g

coefficient coefficient
BCII magnitude phase

u (x) 0.904 -0.614

u (x) 2-88E-02 0.556

u4(x) 5.15E-02 4.13E-02

u6(x) 3.39E-02 1.05

u (x) 2.52E-06 1.90

u 3(x) 7.79E-06 -0.602
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lowest loss even parity modes; the curve marked "3 BCM" uses

the three lowest loss even parity BCM; the curve marked "5

BCM" uses the four lowest loss even parity BCM and the lowest

loss odd parity BCM. In the last case, the inclusion of the

odd parity mode made no difference from a plot that only used

the four lowest loss even modes. The best approximation

appears to be either of the first two plots marked "1 BCM"

and "2 BCM". The other plots differ significantly from the

iterative solution. It is most likely that a combination of

inaccuracies in the generation of the original and

interpolated BCM produce the deviations. However, one cannot

predict from the expansion coefficients the behavior that is

observed in Figure 4.21. Rather than pursue this case in

more depth, let us consider another case to see if the same

behavior is observed.

This case is the case that has been considered at length

in the preceding sections. The magnification is 2.5 and the

equivalent Fresnel number is 1.2 . Table IV-3 shows the

expansion coefficients for this case. Again, the lowest loss

BCM dominates the next mode by a large amount (a factor of

11). Again, no clear cut-off is evident in the even parity

modes. The odd parity modes have much smaller expansion

coefficients as before. Figure 4.22 shows LCM calculated by

the additive model as well as three approximate LCM that are

labeled in the same manner as those shown in Figure 4.21.

Here the best match is the last approximate LCM, using the

location of the small peaks as the deciding factor. However,
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TABLE IV-3.

Bare Cavity Mode Expansion Coefficients
H 2.5 Feff = 1.200 go = 3.0 gth

coefficient coefficient
BCH magnitude phase

u (x) 0.846 0.301

u2 (x) 7.50E-02 1.601

u4 (x) 3.16E-02 1.458

u6 (x) 5.07E-02 2.845

ul(X) 3.57E-06 -2.294

u3 (x) 2.15E-05 -2.513
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when the fourth lowest loss even parity BCM is included the

intensity of the approximate LCM differs radically from the

iterative solution. It seems that the inaccuracies in the

higher order modes is the most likely source of the

difficulty, although the results studied to date represent

only a preliminary study of the expansion of the loaded

cavity mode in a series of the bare cavity modes. Several

other cases were studied and similar behavior was found.

Recall that the bare cavity modes are not power

orthogonal and so when the series approximation to the LCM is

used to obtain an intensity, the cross terms do not vanish

but remain as products of the BCM. This can be made more

clear by considering the intensity of the approximate LCM

when the three lowest loss BCM are used:

S . oA. Q) 4 I 04 IA 4 1

(4.38)

+ AU %AY' L4Lx) -k be l&p* tAs x x t
0 4

* The cross terms may interact in an unpredictable manner. It

is through these terms that the higher order modes can

interact to give the correct LCM. Further study is required

to fully explore this bare cavity mode expansion. It is left

as a recommendation for future work.
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G. Summary

In this chapter, we have developed a numerical model

that implemented the analysis of the loaded cavity that had

been developed in Chapter III. -The model had two major

restrictions in it. First, the method of stationary phase

was applied to the the term in the propagator that contained

the gain. This meant that the stimulated radiation was

propagated in a geometric manner, neglecting diffraction.

Second, the gain was approximated by a single gain sheet

located at the feedback mirror. These approximations are

justified. The use of tl-e method of stationary phase is

justified by the application of the method of stationary

phase to the entire integral equation that was discussed in

Section C of this chapter. The results of that section were

in excellent agreement with previous results published by

Moore and McCarthy. The second approximation is justified by

the analysis done by Milonni that showed that the single gain

sheet is a good approximation even for low Fresnel number

propagations. The gain model was a simple saturable gain

model that used homogeneously broadened gain.

This model was then implemented as was another model

that included the gain as a multiplicative factor in the

integral equation. A wide variety of phenomena was examined

with both codes. Convergence studies were done to validate

the internal consistency of the models. Then the behavior of

parameters such as the magnitude and phase of the eigenvalue

was studied. The magnitude of the eigenvalue was unity when

the small signal gain was above threshold. The phase changed
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as the gain was increased shoving that the oscillation

frequency of the loaded cavity mode would be different from

the lowest loss bare cavity mode. The power on the feedback

mirror was also studied and the results shoved that the

additive model was in better agreement with geometrical

optics predictions than was the multiplicative model. Both

models predicted a threshold small signal gain that was lover

than the geometrical optics threshold gain. Plots of the

intensity of the loaded cavity mode as the gain was increased

showed significant differences between the two models. The

additive model gave results that had slightly different

maxima and minima from both the lowest loss bare cavity mode

and the multiplicative model. The phases of the modes from

the two models and the lowest loss bare cavity mode were in

excellent agreement for all the values of small signal gain

that were studied. Thus, for this simplified gain model, the

beam quality of the loaded cavity mode should be about the

same as that of the lowest loss bare cavity mode. Another

study was done of the phase of the eigenvalue and the power

on the mirror as a function of the equivalent Fresnel number.

An oscillation in these parameters was found to agree well

with the oscillatory behavior reported in the literature for

the magnitude of the bare cavity eigenvalues. One

peculiarity was that the phase of the loaded cavity

eigenvalues was zero when a extreme was observed in the power

on the feedback mirror. The case of a mode crossing was

examined and the additive model was found to give much better

174



convergence than the multiplicative model. Finally. a

preliminary study was made of projecting the loaded cavity

mode onto the bare cavity modes of the resonator. The bare

cavity modes were generated with the methodology developed in

Chapter II. Although a fairly good approximation to the

loaded cavity mode could be found, no clear criteria were

found to indicate which higher loss bare cavity modes were

required in the expansion in order to accurately model the

loaded cavity mode.

The general conclusion of this chapter is that the

numerical model gave results that agreed well with previous

models of the laser. The loaded cavity eigenvalue showed

that gain equal loss by converging to a value that had a

magnitude of one. The model exhibited a threshold behavior,

below which the magnitude of the loaded cavity eigenvalue

was less than one and the power on the feedback mirror was

negligible. This threphold was in fairly good agreement with

the one dimensional predictions. The model predicted the

variations of the power on the feedback mirror and the phase

of the eigenvalue with the Fresnel number that were well

correlated with the variations in outcoupling with Fresnel

number discussed in Chapter II. The expansion of the loaded

cavity mode in terms of the bare cavity modes was a new

application of these modes.
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V. Conclusions and Recommendations

A. Introduction

In this chapter, we summarize the work that has been

detailed in Chapters II, III and-IV. We will review each

chapter separately, highlighting key conclusions and

commenting on recommendations for future work in the topic

covered by each chapter. This summary is not intended to be

a detailed review of the work, but rather is aimed at showing

the most significant results obtained in this research

effort.

The goal of this work was to increase the understanding

of laser resonators by developing a consistent formulation of

the modes of empty and loaded resonators. The majority of

the study dealt with the modes of bare and loaded strip

resonators. The strip resonator was further restricted to be

a single-ended, unstable resonator. The approach broke

naturally into three parts. Chapter II presented an analysis

of the bare strip resonator modes. This provided the

fundamental description of the natural properties of the

resonator; in addition, it developed the use of a new basis

set, the linear prolate functions, in the calculation of the

bare cavity modes. Chapter III developed the theory of

the modes of resonators that contain a saturable gain medium.

The analysis began with Maxwell's equations and ended with an

integral equation for the modes of a loaded resonator. This

analysis led into Chapter IV, in which the numerical

implementation of a simplified model of the loaded strip
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resonator based on the theoretical analysis was accomplished.

Here, in Chapter V, we review each of the earlier chapters,

beginning with the bare cavity analysis.

B. Bare Cavity Mode Analysis and Modelling

The analysis of the resonator that does not contain a

gain medium lays the foundation for the analysis of

resonators that do contain a gain medium. Thus, we began

* with an analysis of the bare strip resonator. Although the

basic properties of such resonators are well known, the

results presented in Chapter II introduce three important

issues: the use of the linear prolate functions as a basis

set for the bare cavity modes (BCM), the study of the

validity of the asymptotic approach at low Fresnel numbers,

and the demonstration of the orthogonality of the 8CM.

The analysis of the BCM was done using the kernel expansion

technique. This approach transforms the homogeneous Fredholm

integral equation of the second kind (FIE(II)) that describes

a round trip in the bare cavity into a matrix'eigenvalue

problem that is readily solved on a computer provided a

"good" basis set is chosen. The analysis is complicated by

the fact that the kernel of the FIE(II) is complex symmetric.

Thus the elgenvalues and eigenfunctions are complex, and the

eigenfunctions obey an orthogonality relation that is

different from the more frequently encountered relationship

for the eigenfunctions of hermitian kernels. Streifer had

shown that the use of the linear prolate functions (LPF)
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would be an optimum basis set in the sense that they would

provide the best N-term series representation of the BCH (Ref

25). However, the basis set had not previously been used in

a numerical model of the resonator. (The linear prolate

functions have been approximated as the hermite gaussian

functions, and in this form, they have been used in numerical

models of the resonator modes.) This implementation was the

first significant result. Two conclusions can be made about

this implementation. First, a nonuniform grid was required

to allow an accurate calculation of the linear prolate

functions with the finite difference algorithm. Second, the

matrix that was used in the matrix eigenvalue problem needed

to retain the complex symmetric nature of the kernel in order

to obtain the best N-term series representation that Streifer

discussed. The proper choice of coefficients in the series

guaranteed this property for the matrix.

The asymptotic approach to finding the bare cavity modes

has been quite useful for large Fresnel numbers. However,

even at these Fresnel numbers, the behavior of the higher

loss modes seemed unphysical in that the magnitudes of the

eigenvalues tended to a nonzero limit. By using the linear

prolate function (LPF) expansion technique, we explored both

the behavior of the higher order modes as well as the

validity of the asymptotic method at low Fresnel numbers.

The first conclusion is that the higher order modes given by

the asymptotic method do not agree with those generated by

the LPF expansion. The use of the asymptotic approach to

obtain the high loss modes of the bare resonator is not
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recommended. For example, one might need these higher order

modes as an expansion set for the loaded cavity modes. The

second conclusion is that the asymptotic method gives good

lower loss bare cavity modes fok equivalent Fresnel numbers

down as low as one. This technique is very fast and thus

knowing it is accurate at low Fresnel numbers would allow it

to be used for the calculation of the lower loss modes.

These modes are frequently used to characterize the resonator

for mirror loadings, misalignment sensitivities and beam

quality calculations. Thus the LPF expansion technique has

been useful in learning more about the validity of the

asymptotic method.

The third significant result from the bare cavity

analysis is the numerical demonstration of the orthogonality

of the BCM. The analytic demonstration was shown In Appendix

1, and the numerical demonstration proved useful for two

reasons. First, it can be used as a check on numerical

calculations of the bare cavity modes. Also,'it is useful

when the bare cavity modes are used as an expansion set, as

discussed in Chapter III.

Some further work can be recommended based on the

analysis and modelling of the bare cavity modes. First, a

numerical implementation of the matrix eigenvalue problem for

BCM of the stable resonator (derived in Appendix 6) would be

of interest to study the modes of these resonators. Stable

resonators might be used in free electron lasers (FEL) since

FEL have a gain volume that has a small transverse extent.
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Stable resonators have a narrow mode volume that can closely

match the FEL gain volume. The implementation of the matrix

eigenvalue problem for the resonator with cylindrical

symmetry (derived in Appendix 7) is also of interest as an

alternative method of finding the- bare cavity modes of these

resonators. This effort would require the development of a

numerical model for the circular prolate functions.

The analysis and modelling of the empty strip resonator

provided the foundation needed for the analysis of the loaded

*cavity modes. The results also provided some new results

that should be useful in future resonator research.

C. Loaded Cavity Analysis

The analysis of the modes of resonators that contain a

saturable gain medium began with Maxwell's equations. The

effect of a gain medium was included through a susceptibility

term. The principal result of this analysis was the

derivation of an integral propagator for an optical field in

a gain medium. The result was used to obtain a round trip

integral equation for the loaded cavity modes. The integral

equation showed that the gain medium is included in terms

that are added to the bare cavity integral equation.

Previous studies usually included the gain as a

multiplicative term. This additive model of the loaded

cavity modes is a significant, new result, for two reasons.

First, the loaded cavity integral equation is similar in form

to an inhomogeneous Fredholm integral equation of the second

kind. These equations are characterized by a unique
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solution, if they have a solution at all. However, due to

the nonlinear dependence of the gain on the field, this

property cannot be ascribed to the loaded cavity equation in

a rigorous manner. The uniquendss of the loaded cavity mode

is suggested by this result and by past analyses that shoved

no evidence of multimode behavior. Thus, this derivation

gives increased insight into the loaded cavity mode. The

second useful result is that the additive model suggests two

new solution techniques. The first method is the usual

iterative approach that has been used in the past. The

second method uses the bare cavity modes as a basis set to

obtain the loaded cavity mode. The orthogonality of the BCH

is used in this method, thus connecting the analysis of

Chapter II. Thus, the primary result of this analysis is

that a fairly rigorous derivation of the loaded cavity shows

the gain should be included in terms that are added to the

bare cavity mode integral equation.

Some additional work is recommended for further analysis

of the loaded cavity modes. The analysis included a complex

susceptibility but the final results were restricted to the

case where the real part of the susceptibility was set to

zero. This restricted the results to the case where the

longitudinal mode of the resonator coincided with the center

of the lasing transition. The result could be extended to

examine cases where there was a frequency difference between

the cavity mode and the center of the lasing transition.

Also, further mathematical study of the properties of
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nonlinear integral equations could provide a proof that, if

there are any solutions to the loaded cavity integral

equation, then they are unique.

Although this analysis was a general treatment of the

loaded cavity, the numerical impiementation of the results

was much more restricted. Chapter IV discussed this

modelling.

D. Loaded Cavity Modelling

The numerical models developed in Chapter IV were

restricted to a single gain sheet located at the feedback

mirror. A review of the past work showed that such a model

was a fairly good approximation for low Fresnel numbers. But

most of the previous work included the gain as a

multiplicative term. Both an additive model based.on the

analysis of Chapter III and a multiplicative model based on

Beer's Law were developed for the strip resonator. Thi

models used a simple saturable gain model for'a homogeneously

broadened medium. Both models used an iterative technique to

find the loaded cavity mode. Also, a geometrical optics

approximation was made to the additive model developed in

Chapter III that gave good agreement with past work. This

agreement gives support to the validity of the analysis of

the loaded cavity as well as provides useful limiting values

for the diffractive models. A number of parameters were

studied with the diffractive models as the small signal gain

and the equivalent Fresnel number were varied. Also a

preliminary study was made of mapping the loaded cavity mode
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onto the bare cavity modes. The study of these parameter

variations gave six important results.

The first conclusion is that the phase of the loaded

cavity eigenvalue was not equal to that of the lowest loss

mode of the bare cavity, indicating that the loaded cavity

mode will have a different oscillation frequency. Second,

the threshold of the oscillation (where gain equals loss) was

slightly lower than that predicted by geometrical optics or

an even more simplistic argument. (This threshold behavior

was only examined for a imited number of cases and the trend

with variations in Fresnel number has not been studied.)

Third, the additive model predicted higher outcoupling than

the multiplicative model, indicating that this latter model

would underestimate the output power of a loaded resonator.

Fourth, the power on the mirror showed fluctuations with

equivalent Fresnel number that were in good agreement with

the fluctuations in the lowest loss bare cavity mode

eigenvalue as far as the location of the maxima and minima.

* Studying the phase of the loaded cavity eigenvalue showed

that the phase was zero at both the maxima and minima. This

behavior is a new result. Fifth, the phase profile of the

loaded cavity modes did not vary significantly from the

lowest loss bare cavity mode when either model was used.

This indicates that the beam quality of the loaded cavity

mode would be about the same as the beam quality of the

lowest loss BCM, at least within the simple saturable gain

model that was used. Sixth, the intensity profiles of

183



the loaded cavity eigenfunctions differed significantly

between the two models. The additive model showed more

filling in of the "peaks and valleys" of the intensity

profile as the small signal gain was increased than did the

multiplicative model. Also, the location and number of peaks

and valleys remained unaltered with the multiplicative model

but the additive model showed noticable changes to the

intensity profile as the small signal gain increased. These

results show that even a simplified model such as the

additive model described here prtvides useful, physically

meaningful information. However, a more definitive

description of the differences between the additive and

multiplicative models would require analysis involving more

gain sheets or a distributed gain model.

The preliminary study of the mapping of the loaded

cavity mode (LCM) onto the bare cavity modes (BCH) showed

that the LCM was a combination of the first few lower loss

even parity BCM. The symmetry of the gain model did not

allow the odd parity BCH to contribute. The main difficulty

was that no clear cut-off was evident to show how many BCM

were needed to give a good approximation to the LCM.

A number of recommendations can be made for future

modelling of the loaded cavity. First, the problem of how to

include a distributed gain in a code without using gainsheets

needs to be further addressed. The variations with z could

give significantly different results from the gain sheet

models. Such a model would most likely consume large amounts

of computer time since a closely spaced three dimensional

184

• ... 't:..,..'...' ..-.. ?,.',?':-,......,,...,.,,.,,-..,.,',,-.,.....-..........-................,........,.... ,.,.....,,.... ,, ,.



grid would be required but it would be useful in verifying

how many gain sheets are required to give accurate results.

A second recommendation would be to include the behavior off

the line center by allowing the-susceptibility to be complex.

This extension would allow indexof refraction variations to

be studied even though-it would still be a single frequency

model. Third, a more realistic gain model could be included

even into the loaded strip resonator model. A model that

included a flowing medium or simpified rate equations for the

medium could be substituted for the simple saturable gain

model that was used here. Finally, a full three dimensional

model could be developed based on the integral equation

derived in Chapter III. Such a model would permit the

modelling of physically realizable laser resonators. A final

recommendation is to continue the study of expanding the

loaded cavity mode in terms of the bare cavity modes. This

exploits the known characteristics of the bare cavity modes

in the design of laser resonators. However, more cases need to be

studied and different numerical models that avoid some of the

interpolation errors need to be developed.

The principal result is that the additive model that was

derived in Chapter III can be implemented in a simple single

gain sheet model that provides results that make physical

sense. One new result is that the phase of the loaded cavity

eigenvalue exhibited zero crossings when the power on the

feedback mirror had a maximum or a minimum.
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E. Summary

The research described here covers a wide range of

topics. The common thread is the study of the modes of a

strip resonator. First, we considered the bare cavity modes

which are the natural modes of the strip resonator. Then we

included the effect of a gain medium on the modes of a

general three dimensional resonator, specializing to the

strip resonator at the end of Chapter III. The effort

concluded with the numerical modelling of the strip resonator

with a single gain sheet approximation for the gain medium.

Significant results that were learned include (1) the first

implementation of the linear prolate functions as a basis set,

(2) the derivation of the loaded cavity round trip integral

equation where the.gain was included as an additive term to

the bare cavity round trip equation and (3) the numerical

model of the loaded cavity round trip equation which showed,

among other results, that the phase of the loaded cavity

eigenvalue was zero when the power on the feedback mirror was

at an extremum.

In this study, we developed a formulation of the modes

of optical resonators that consistently included both the

empty and loaded resonator. The development of Chapter III

laid the foundation while Chapter II examined the empty

resonator case and Chapter IV modeled the loaded resonator.

The structure of the round trip integral equation that was

developed in Chapter III is what gives the increased

understanding of the resonator modes. We again make the

analogy to an inhomogeneous Fredholm integral equation of the
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second kind (which was discussed in Appendix 1). The kernel

of the equation gives insight into the natural or normal mode

structure of the resonator, which are the bare cavity modes.

Any changes to the resonator itse'lf, such as changes in

mirror reflectivity profiles, mirror curvatures or

aberrations, and aperture sizes, would alter the kernel of

the round trip integral equation. However, the impact of an

active medium does not modify the kernel but rather appears

as an inhomogeneous term. In linear integral equations, this

would mean that a unique solution would exist (subject to the

conditions discussed in Appendix 1). Even in the case where

the inhomogeneous term depends on the solution, as it does

for the case of saturable gain, a solution is obtained that

is consistent with the gain function. If the gain .function

changes, then the loaded cavity mode would change. Thus, this

formulation gives new understanding of the modes of loaded

optical resonators. Further insight will be gained as the

theory of nonlinear integral equations of the type derived in

Chapter III is developed.

a.
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Appendix 1. Orthogonality of the Eigenfunctions of Complex
Symmetric Kernels

We begin this appendix with a brief discussion of a part

of integral equation theory. This review is intended to

provide some needed background for the discussions in

chapters 2 and 3. The general form of the inhomogeneous

Fredholm integral equation of the second kind is

x) W (X) +S Kk, (4y)cy , XELA.b) (A.l)

The function f(x) is a known function, K(x,y) is called

the kernel, ) is a parameter, the limits a and b are

constants, and +(x) is the unknown function that is the

solution to the integral equation. The homogeneous form of

the equation is obtained by setting the function f(x) to

zero:

bU'% (X) = S K (x.y) un k -) y X 6 6 .) . (A .2)

Here 'A,(x) is an eigenfunction of the kernel and 1 is

an eigenvalue associated with the eigenfunction. The

elgenfunctions and eigenvalues characterize the kernel. The

eigenvalues form the spectrum of the kernel.

We will briefly state some of the basic properties of

this class of equations. We assume that the kernels are

continuous and linear. (We will later assume the kernel is

complex-symmetric but this property is not required at this
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time.) We now state a principle without proof, noting that

the proof is covered in numerous textbooks on integral

equations. (Ref 54)

This principle is the Alternative Principle. There are

two classes of solutions for Eq(Al.1). The two classes

depend on whether the parameter 'X is in the spectrum of

*the kernel. If 3N is not in the spectrum of K(x,y) ,

Eq(Al.1) has a unique, continuous solution for each

continuous f(x): . The solution is
1

= N) 4 S(X, ) , (A1.3)

where S(x,y;X) is the resolvent kernel given by

where the iterated kernels, K (x,y) , are defined by

A:.I,(x,y) = i,',,) L,(A1.5)
Kj~lVL~,)K~Lu,y)4tA

with K(x,y) - Ko(x,y) . The kernel is restricted to be (1)

any continuous function on aA x,yfeb and (ii) a linear

function. If A is in the spectrum, then no solution exists

unless f(x) is such that it is orthogonal to eigsenfunctions

of the transposed kernel, KCr(y,x) . Then no unique solution

exists. The solutions are

+93 (A1.6)
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where 'PI.A) is a particular solution and the eigenfunctions,

% 1L LX) , are associated with the elgenvalue at hand.

(The loaded cavity analysis of Chapter III draws an

analogy to Eq(Al.1). We expect that the loaded cavity

eigenvalue is not in the spectrum of the bare cavity kernel

since it must have an exact magnitude of unity for above

*threshold conditions. Thus the first solution would be the

analogous solution and suggests the loaded cavity integral

equation may have a unique solution.)

We nov show that the eigenfunctions of complex symmetric

kernels obey an orthogonality relationship. This relation

has been called "biorthogonality" in past articles on laser

resonators. (Ref 55) A kernel is called complex symmetric

if K(xy) - K(y,x) for complex valued kernels. (If, for

complex valued kernels, K(x,y) a K*(y,x), then the kernel is

called hermitian and a different orthogonality relationship

is obeyed by the eigenfunctions. This relationship will be

discussed later.) We begin by obtaining the Ofirst iterate"

by multiplying Eq(Al.2) on both sides by K(zx) and

integrating over x from a to b and using Eq(Al.5) to

define the iterated kernel:

3c7y K, (Al.?)

We consider the inner product defined by
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Then, using Eq(Al.2) to replace the elgenfunctions, we obtain

(IA.,, .) = jt4T% A(x,y ) T kvlA,,')dA. (A.9)

Now switch the order of the integration so that the kernels

are isolated under an integral over x and use the

assumption that the kernel is complex symmetric:

The integral over x is just the iterated kernel used in

Eq(A1.7) and then the integral over y is replaced by

I., , using Eq(A1.9). Then we have

or, noting that the integral is the inner product defined in

Eq(Al.8).

.. .- , ) ,, 0 o . (,.,.,

Thus, if the eigenvalues are nondegenerate (V. *V, ), then

the eigenfunctions are orthogonal (also called biorthogonal

by Siegman in Ref 55) in the sense that
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(UMI %.) =Atk. %,,,' (Al .13)

assuming the eigenfunctions are suitably normalized. (In

fact, by setting n - m , one can use Eq(Al.13) to normalize

the eigenfunctions of complex symmetric kernels.)

We now digress to discuss the orthogonality property

that the eigenfunctions of hermitian kernels obey. The

hermitian kernels are more well-behaved in that the

eigenvalues are real and the eigenfunctions can be shown to

form a complete set. Recall that a kernel is hermitian if

K(x,y) - I (y,x) . We define the inner product for this

class of kernels as

kA'L MSa Ak %*(X (A10.14)

Again, using Eq(AI.2) to replace the eigenfunctions, and

conjugating as necessary, we obtain

b (A1.15)

Regrouping the terms and using the hermitian property of the

kernel, the conjugate of the first iterated kernel is:

196

4



ayA(<, A'%0 K(.Y¥ (Al. 16)

Using the conjugate of Eq(Al.7), ve find

The integral is just the inner product we started with, so

the orthogonality property is

(AS * y) % %A* (Al.l8)

ro.

Again, we have assumed the eigenfunctions are suitably

normalized. This result, Eq(Al.18), is the orthogonality

property that is more frequently encountered, since many

physical problems can be described by integral equations that

have hermitian kernels. The bare cavity modes of the optical

resonator is one case that cannot be so described and thus a

different orthogonality relationship is applicable. This

relationship is given in Eq(AI.13).
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Appendix 2. Derivation of Matrix Eigenvalue Problem for
Strip Resonator

This appendix includes the derivation of the Horwitz

standard form of the integral equation for the modes of a

single-ended, strip resonator and the derivation of the

matrix eigenvalue problem for the bare cavity modes using the

linear prolate functions as a basis set. We begin with the

integral equation that describes the modes of an aligned,

strip resonator that does not contain gain. This equation

can be obtained from the analysis of the loaded cavity

contained in Appendix 4 if the gain term is set to zero.

Also, this equation has appeared frequently in the

literature. The equation is

0 ouYK ae)~ (A2.1)

Let

iTir FX,
U (A2.2)

where

~ T~i~)(A2.3)

and

(A2.4)

198

,,,,%,." . ,,,, ,/, *.5. , .... , . . . . * S, . . . . . . .- .- . . ...... .... .. . .. ,. . ...



Substituting Eq(2.l) into Eq(A2.2) and collecting terms in

the exponential functions, one obtains

ia

By using Eq(A2.3) and Eq(A2.4), one can show that

41M and IF, -F/ - Using

these relationships and completing the square in the

exponential function, Eq(A2.5) becomes

SlVi - S LI y e ty . (A2.6)
i: -1

If we define t =rrMF and ,mtrr" , then Eq(A2.6)

becomes the Horwitz standard form of the single-ended,

aligned strip resonator:

(,4A'rX) e yIe -, (A2.7)
* -I

The next derivation that will be done in this appendix

is the derivation of the matrix eigenvalue problem using the

linear prolate functions as a basis set. First, we transform

the eigenfunction of Eq(A2.7). Let

A(Yo e v (,x) (A2.8)

Then the integral equation is
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e vitx) = e a v/) (A2.9)

-I

Now define -- and expand the kernel and the

eigenfunction in terms of the the- linear prolate functions,

i.e.,

s~o

i "x
and

(Refer to Chapter 2 for a discussion of the linear prolate

functions.) Both of these series are convergent. Using these

series, the integral equation becomes

(A2.12)

w ,mtO -'itt

Now

I ,4
dy % y y (A2.13)

This result is used in the right hand side of Eq(A2.12). We

now multiply Eq(A2.12) by *,.,(Y) and integrate over x

Using Eq(A2.13) again, one obtains
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A Ax e -' 6 0 (A2 14)

This is the matrix eigenvalue problem for the bare cavity

modes of an aligned, single-ended strip resonator where the

linear prolate functions are used as a basis set. Formally,

the problem is stated as

where the matrix elements are

-.I

Note that this matrix has retained the complex-symm'etric

nature of the original kernel in Eq(A2.1). The solution of

the matrix eigenvalue problem gives the eigenvalues and the

expansion coefficients. The modes are reconstructed using

the relation

Note finally that this equation expresses the mode at

fictitious plane halfway through the feedback mirror. To

find the field just prior to the mirror, one multiplies the

field by the conjugate of the mirror factor, i.e.,

MI LX) . e (A2.19)
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Appendix 3. Derivation of Greents Function for Paraxial Wave
Equation (2-D)

We seek a solution to the equation

1- I

We construct an auxiliary equation for a Green's function

where translational invariance has been assumed:

- G(Kx-x",1- ') -Zik -qr c-,-z-) (A3.2)

If the coordinates are interchanged, then Eq(A3.2) becomes

Now, suppressing the coordinate dependence for a moment and

letting u' - u(x',z') the differential equation can be

transformed into an integral equation by multiplying Eq(A3.1)

by C and Eq(A3.3) by u and subtracting the two equations:

SAX-L G txy-kA Gt,,) - z I' 5dicyi,-+ SA&&C k'K(% qz '. (A3.4)

Integrating by parts, the first term becomes

dxlz (GtAiitG,.) =Sx A9 G G, ) (A3.5)

The boundary conditions are chosen such that both u and G
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vanish on the surface. Note that this is analogous to the

KIrchhoff radiation condition. Therefore, the first term in

Eq(A3.4) is zero. Also, we chose the case where z' > z

Thus, the integral equation that is equivalent to the

differential equation is

LAKI X Z!) Tax G(W- X, -0 kA(X,O0) +

(A3.6)

+ Pz x G .,'-ci'-) k I ,.') A (X.v .
0 -a

We now find an appropriate Green's function.

Consider the Fourier transform

SI-T ffwJV (w,, (A3.M)

where 9 -x'-w, and q=a'-u , and substitute this into the

differential equation

i C(, -ZiIw-G -.,) IT -r) (A3.8)

Recall the integral form for the delta function:

J(,z , Zi(f +q) (A3.9)so

Then we find that

% ZkV
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so

G ,m) . a e W(A3.11)

Rewrite this equation as

G -- aw Jdv -w (A3.12)

as -d 2

We move the singularity to the origin by replacing v with

Then

; _ i e-; L') -" z' e-'z'/

M- n,,, t), - (A3.13)

The integral over y can be readily evaluated. Let

(A3.14)

We let y Y to shift the pole slightly off-axis.

Then, with y _. i

-- q-Say , -'n Y+ (A3.15)

The residue is PC-"' so, choosing a contour on the lower

half plane, we find

.#! .- Z I i 19 () (A3.16)
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where 9(rj) Is the stop function.

Substituting this into the Green's function, Eq(A3.13),

we have

G(t,,) = . ,,, (A3.17)

If we assume , then this integral can be

evaluated (see Eq(A4.10) for the general form), and the

Green's function is obtained:

e = -/ -  (A3.18)

We choose %1>O , and taking the limit, then the Green's

function can be written

Or '
G= e A17 A(3.19)

Thus, the two-dimensional propagator can be written as

uL,,I % IN ,') -k- t Ix,!) (A3.20)

where

and

TVT, kXL ,' A(,z') (A3.22)
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If we restrict the study to the case where the longitudinal

mode Is coincident with the line-center of the gain profile.

then the susceptibility is purely imaginary, and, using the

gain function, k XL) we have

U. Ix.a) = i'Jd ' e aa (.x','u) IAI?,D') . (,A3.23)
0 -1

This concludes the derivation of the two-dimensional

propagator for the loaded strip resonator.
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Appendix 4. Round Trip Equation for Loaded Strip Resonator

This appendix contains the derivation of the round trip

integral equation using the propagator, Eq(A3.20), derived in

Appendix 3. The resonator is modeled by an equivalent lens

train which is shown in Figure A4.1. The various %A shown

on this figure are fields in the resonator that will be

calculated. Each lens shown in the figure is modeled as a

phase sheet. In the paraxial approximation, the spherical

curvature is approximated by a parabola. (Ref 50) The

phase factor for the lenses (which represent half of the

phase effect of the mirror) is then

AL () e

where the amplitude factor, A,Lx) , is used to both aperture

the lens and include any transmission profiles (equivalent to

the mirror reflectivity profile) that may be on the lens.

Here, we assume the lenses are perfectly transmitting (i.e.

the mirrors are perfectly reflecting) across their width,

Z. , and they are totally obscured outside this region.

Thus

1

=- (A4.1)

0 ,4 I > > .

Let us now proceed with deriving the round trip equation.
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We assume the field %(XO) is known. Then the field

just after the first half lens is

LAAx,o) e A,us) ULx,O) (A4.2)

Now, using Eq(A3.20) as a propagator, we find I.A,( L) :

-% L d, eo 0) +
-4.

(A4.3)

Jf f ax-V ,- ( (it','- , V ) .

We multiply u,(K,L) by the mirror factor twice to account

for the two lenses that are equivalent to the full. reflection

off the back mirror. Thus

"3A (K,L) = [Ax(Y)]z e U,(x,L) (A4.4)

We hold off substituting for I, for the moment to avoid

unnecessarily complicating the development. The propagation

from the back mirror up to the feedback mirror is

U 3 1l.L) = a. x ¢-,.t z ," ,x,, -t

(A4.5)

+ '~~£"JI"e - AM(.1, i
14% FZ . 2-VS3

The final lens is included by
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U,4 (x,IL) A, ) e- 4 L. 3 (.%,zL) . (A4.6)

Now we substitute the expression for %3t%,2L) into Eq(A4.6)

and then substitute the expression for %Ax,L) into this

result. The equation for % is then

+ T k (X!' , + (A4.7)

L vL

where

tlt

L
(S a L " ' '-' (A4.8)

and

"I, , 1 -(A4.9)

_qi

These last two integrals are singled out since neither the

gain function nor the fields appear in them. These equations

as written apply to double-ended strip resonators. However,

resonators are usually designed so that the back mirror is

large enough that all of the resonator mode is reflected off

the mirror. In this case, we can let k--A *. Then these
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two integrals can be evaluated analytically. In this

evaluation, we use the integral relation

S'c_ (A4.10)

which is valid for complex a and b as long as the real

part of a is positive. (Ref 51) Using this relation, we

can immediately evaluate Eq(A4.8):

A similar but somewhat more lengthly evaluation of Eq(A4.9)

yields

, I ' , , .' = " n  a at.,iW Xr-W
e .gVV (A4.12)

where

If these last two equations are substituted into Eq(A4.7), we

obtain the final round trip integral equation for the loaded

cavity modes of a single-ended strip resonator. If we define

a Fresnel number with r- a 4F,/(7A.1) , then this equation

can be written as
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%A,4tx,Z.L A,tx) E; e, U~x Oe€'o )

-- 

- .

Le (X' (L_ - ,I

4. . ~~jI)jJ1 - .;](A4.14)

Z~ ~ 2.L-
-. L

This concludes the derivation of the round trip equation for

the loaded strip resonator. We note that the integral

equation for the bare cavity modes of the strip resonator is

obtained by setting the gain function, 9$x.') , to zero.

Then, if we scale the coordinates by the half width of the

feedback mirror, we obtain

U4 OCI' (A4.15)

This integral equation is discussed in Chapter 2 and used in

Appendix 2.
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to order - . Here the stationary phase point, x. , is

determined by the condition p'(x) - 0 . This

approximation assumes that the function q(x) is slowly

varying as compared to the variations in the exponential

term. The result in Eq(A5.2) becomes more accurate for large

t and this result does not show the endpoint contributions

which are of higher order in t . For further reading in

the KOSP, the reader is referred to Appendix III of Ref 48.

Before we can apply Eq(A5.2) to the second term of

Eq(A5.1), we must insure that q(x) is not rapidly varying.

Since we have assumed a positive branch confocal unstable

resonator (PBCUR), one leg is expanding and the other leg is

collimated. For the collimated leg, the field u(x) has a

slowly varying phase and Eq(A5.2) can be applied directly.

However, the field in the expanding leg has a spherical

curvature that must be moved into the exponential term

before Eq(A5.2) can be applied. We deal with each case

separately.

Collimated Leg Propagator

We consider the second term of Eq(A5.1):

e°, Were L')'z' 'AuXZ' A53

Here, g(x',z') u(x',z') is slowly varying compared to the
S

exponential. The stationary phase point is x' = x . Using

Eq(A5.2), Eq(A5.3) is approximated by
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Appendix 5. Method of Stationary Phase Applied to Two
Dimensional Propagator

In this appendix, we will use the method of stationary

phase (MOSP) on the two dimensional propagator, Eq(3.23),

which is reproduced here:

uLy,z) = j I " tA,,", o) +

+ ' 7 -l.

The susceptibility that had been in Eq(3.23) has been

replaced with the gain functions. This restriction is

discussed at the beginning of Section C of Chapter III.

The goal of this appendix is to use MOSP on the second

integral in Eq(A5.1). This approximation is equivalent to

ignoring diffraction of the stimulated radiation over the

propagation length. The purpose is to includp the stimulated

radiation in a successively more complicated manner. The

approximation also simplifies the numerical modelling of the

loaded strip resonator.

According to the MOSP, a general integral can be

approximated by

6213
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%A Y a L (- It S ,) A K. -A (A5.4.)

and the collimated leg propagator is written as

S e+ T9A %A,'). (AS.5)

To show the utility of this approximation, we will obtain

Beer's Law from this analysis. Note that the MOSP can be

applied to the first term as well to obtain a geometric

* propagator for the collimated leg:

A (xM) - ),o) + %&( .(A5.6)

0

If we now assume that the gain is small over the gain length,

L , and replace the integral in the second term with a gain

sheet as discussed in Chapter III, then we obtain

U, '.) = [10 4.(o)] Lx,o) (A5.7)

Now for small gain, the first term on the right hand side of

Eq(A5.7) can be replaced by an exponential:

UN.I Q - e- t" k, X. 0) (A5.8)

This is Beer's Law which arises naturally from the theory

developed in Chapter II. One sees the number of

restrictions that need to be invoked to obtain this simple
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but useful relationship.

Expanding Leg Propagator

To model the expanding leg., we first remove the

spherical curvature on the field. In the paraxial

approximation, this curvature is represented by a quadratic

phase term:

= -  v(xa) ( (A5.9)

Then the second term of the two dimensional propagator is

: ~ ~ ~ ~ ~ ~ -T T-xa - " ,g L+.' ,,'al (AS.1O)

*1 
@2

Here, q(x') " v(x) g(x') and

I 1 ' /(A5.11)

By setting the first derivative to zero, the stationary point

may be found:

S-a' (A5.12)

and thus

2 ,(A5.13)

Applying Eq(A5.2), we obtain
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After some straightforward algebra, the final expression for

the expanding leg propagator is

%A kK,. 1) WE LA - a,," 0" (  ) u ,)

(A5.15)

* °

These two propagators will be used to derive a round trip

integral equation for the loaded strip resonator that will be

used for a numerical model.
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Appendix 6. Matrix Eigenvalue Problem for Stable Strip
Resonator

In this appendix, we derive a matrix eigenvalue problem

(MEVP) for the case of the stable resonator, that is, for the

case where 0 < g < 1 The derivation parallels Appendix 2.

We begin with the integral equation for a empty strip

resonator:

au() = y)ZSyj e %A Oy . (A6.1)
-i

This formulation is directly applicable to the stable

resonator. The transformations in Appendix 2 introduce the

magnification and the equivalent Fresnel number, which are

quantities that are most applicable to the unstable

resonator. If we examine Eq(A2.3) and Eq(A2.4) for the case

where 0 < g < 1 , the magnification becomes a complex number

of unit magnitude and the equivalent Fresnel number becomes

a pure imaginary number. The quantities F and g remain'

more meaningful for the stable region.

Let c - 2 w F and make the tranaformation

)= e (A6.2)

Then Eq(A6.1) becomes

=r V1 Jdy'o) (A6.*3)

-2
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4

We now expand the kernel and the eigenfunction in linear

prolate functions:

e L"(,K)(A6.4)

=1 (X) ~ (A6.5)

Substituting these expressions into Eq(A6.3), and using the

orthogonality property of the linear prolate functions,

L- I" (X) (X) (A6.6)
-I

we obtain the MEVP

a 6 =E(A6.7)

where

= IT- ay* e- A(X)Mk) (A6.8)

We consider two special cases. The first case is when

81 M 2 & 0 which is the stable, confocal resonator. For

this case, g - -1 . In this case, the modes are known to

be proportional to the linear prolate functions. (Ref 52)

The eigenvalues should be real, according to Boyd and Gordon.

In this special case, the matrix becomes
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' X (A6.9)
Iii.~~ T'k 'I -'

The result does not show that the eigenfunctions are the

linear prolate functions nor does it show the eigenvalues are

real. In fact, they are not. The difference is a subtle one

but worth noting. The resonator model developed here is for

a single-ended resonator, while the case studied by Boyd and

Gordon was a double-ended resonator.

The second special case is the case where g a 0 . This

case is for the stable resonators where g, g, 0.5 . Then

the matrix becomes a diagonal matrix,

B ki F (A6.10)

and the eigenvalues are

cr .L(A6.11)

and the eigenfunctions are

A4k,,Ak (X) W k. k'k (X) (A6.12)

A geometric analysis of this special case shows that the

feedback mirror is confocal with its image in the back

mirror. Thus, it is this case that more closely parallels

the study done by Boyd and Gordon.

220



The parallel derivation of the MEVP for stable, strip

resonators is presented for completeness. A numerical model

could be readily developed from the unstable resonator model

developed in Chapter II. A final note: the eigenfunctions

of the stable resonator are only the Hermite-gaussian

functions in the asymptotic limit where the feedback mirror

becomes large. (Ref 25) Thus, for small feedback mirrors

and for stable resonators, the derivation presented in this

appendix would be an appropriate method.

d
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Appendix 7. Matrix Eigenvalue Problem for Resonators with
Circular Mirrors

In this appendix, we derive a matrix eigenvalue problem

for empty resonators that have circular mirrors. This

derivation parallels the development for strip resonators.

We begin by including some key results for the circular

prolate functions, which are similar to the linear prolate

functions discussed in detail in Chapter II. The reader is

referred to the article by Frieden. (Ref 27)

The circular prolate functions are defined by an

integral equation:

Iz

Sd 0. C" Zf~ W~~~~ (A7.1)

Letting r. = 1 , so the space-bandwidth product,- c , is

defined by c-=l ,and, letting i - , the integral

equation becomes

The circular prolate functions also obey an orthogonality

relation:

~ rTO() (A7.3)

Nov the modes of a resonator that has circular (or

cylindrical) symmetry can be decomposed into radial and
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azimuthal modes, Just like the resonator with rectangular

symmetry has modes that can be decomposed into the strip

modes studied in Chapter II. Following Butts and Avizonis,

we write the round trip integral equation for the radial

modes: (Ref 21)

CX

Each radial mode has an exp(Zl ) dependence. The variable

t is 1tMF where M is the magnification and F is the

Fresnel number used in Chapter II. We make the

transformation

= W! (A7.5)

and then expand g(x) in circular prolate functions:

I k . , (A7.6)

Then the integral equation becomes

(T .o Q" ,' (X) -" 2. t e- t '  ,.- .., k , . (A7 .7)
n.Qo

where

(d yj,) . (A7.8)

Using Eq(A7.1), Eq(A7.8) can be rewritten as
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"- ., (A7.9)

Then Eq(A7.7) becomes

a) .4,,,..,,x)

By multiplying by a circular prolate function of arbitrary

index and integrating from 0 to I , we obtain a matrix

eigenvalue problem,

Co,[ (A7.11)-,

where the matrix is

4.',

i ' e(A7.12):~~ ~ .ta, 0" e +- . I, (x)T,..LX).

The derivation used here does not lead to a complex-symmetric

matrix. Different expansion coefficients like those used in

Appendix 2, Eq(A2.11), or Appendix 6, Eq(A6.5), would be needed

in order to obtain a complex-symmetric matrix. Recall that

the complex-symmetric matrix is necessary to retain the

properties of the round trip integral equation.
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This formulation is most applicable to unstable

resonators. At present, a numerical code does not exist that

solves this geometry, but the development of such a code

would parallel the strip resonator code development discussed

in Chapter II. The use of the 'circular prolate functions

would have the same advantages that the linear prolate

functions have, i.e., they should give the N-term best

representation for the modes of the circular mirror

resonator.
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Appendix 8. Geometrical Optics Approximation to the Loaded

Cavity Round Trip Integral Equation

In this appendix, the loaded cavity round trip integral

* equation is approximated using .asymptotic methods. The

equation we will approximate is Eq(3.26) which describes the

loaded strip resonator. By letting the wavelength go to

zero, a geometrical optics approximation to this equation

will be obtained. We begin by reproducing Eq(3.26):

",, x24.) - + , +' (A8.1)

where

A . F
IF - Pr y o (A8.2)

_ .'- e. j.j - ,.-- ' (A 8 . 3 )

and

-4 a.-1WT+ =+ y z +- -_ (A8.4)

where = :. = . "4

L I-

We restrict the approximation to the confocal resonator

by using the following relations:
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M+1 g.- ML+1

Then

- "(A8.5)

and

L (- L'L-I) (A8.6)

-C& (M+ )L -?-

The asymptotic approximation that is used is the method of

stationary phase (KOSP), described in Appendix 5. Recall

Eq(A5.2):

S,,- 7(A8.7)
- +. ,"(e. )

We apply this equation to the term in Eq(A8.2), which is

rewritten for the confocal resonator:

4M

-,/ LyLA.(y,o) e (A8.8)

Now the field has a curvature on it due to the mirror. In

order to accurately apply the MOSP, this curvature must be

explicitly included in the exponential term. Thus

_ -,1 -) X'

"I , o) = ", ,o) eP % .

; t/q'L)*cT (A8.9)
Q. (,o) e2
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The superscript "c" denotes a collimated field. Then, after

some straightforward algebra, the first term becomes

T,k tY,) =e v :o )• (A8.1O)

Applying the method of stationary phase to the integral, we

find

,( ,o) 0 .

We now evaluate the second term. First we apply the

confocal resonator constraints and transform the field to

a collimated field. The result is

TL_  I I IS!.,.'C %, tl,,

T ~ ~~~ Fzz a

04-1, % -,., , -L s._,] (A8.12)

e e

Now the field u,(x,z) contains an expanding spherical wave

for the confocal resonator. This is modelled as

where

8(A8.14)
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end

LtA U- ) s (A.5

Using Eq(A8.13)snd doing 
some algebra on the exponents, 

the y

integral in Zq(Ae.12) is rewritten 
as

We collect terms and rewrite 
Eq(AB.1 6) as

A:, -d a,/ ys'/) ,/ e--" (A.7)
",y' -J3 in

where

_________._._"_(A8.18)A (M-).4- -)

and

ML. 
(AB. 19)

We apply the MOSP on Eq(A8.
17) end, after some lengthy

algebra, obtain the final 
result for the second term:

L
fL M1 4-" •- XIL A", "X" $,) l '* (A8.2O)

The approximation of the 
third term is much simpler

since the field u (x,s) is already collimated. 
We remove
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